簡易檢索 / 詳目顯示

研究生: Naili Saidatin
Naili Saidatin
論文名稱: Improved CZTSSe Solar Cell Performance by Grain Boundary Passivation
Improved CZTSSe Solar Cell Performance by Grain Boundary Passivation
指導教授: 陳瑞山
Ruei-San Chen
陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
口試委員: 陳瑞山
Ruei-San Chen
龑 戴
Yian Tai
陳貴賢
Kuei-Hsein Chen
林麗瓊
Li-Chyong Chen
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 74
中文關鍵詞: 銅鋅錫硫鹼土氟化物晶界太陽能電池
外文關鍵詞: CZTSSe, Alkaline earth fluoride (MgF2), Grain boundary, Solar cells
相關次數: 點閱:305下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅鋅錫硫(Cu2ZnSn(S,Se)4)薄膜作為太陽能電池吸收層材料因其較其他商用太陽能電池低廉的製造成本而極具發展潛力。目前銅鋅錫硫太陽能電池最高效率為美國IBM團隊的12.6%,仍不比由德國ZSW團隊提出之具有相似結構的銅銦鎵錫太陽能電池的21.7%。銅鋅錫硫太陽能電池主要的問題為較低的開路電壓(Voc),已有廣泛的研究指出銅鋅的無序排列與硫硒的不均勻分布造成之能帶擾動會降低銅鋅錫硫太陽能電池的開路電壓,此外,諸如較低的介電係數、大量的缺陷、鈍化不完全的晶界等皆會使銅鋅錫硫太陽能電池的開路電壓降低。
    本研究旨在利用氟化鎂鈍化技術,在不需做後續回火處理的情況下鈍化銅鋅錫硫吸收層表面的晶界,藉由掃描式表面電位顯微鏡(Scanning Kelvin Probe Microscopy)分析可知,經過氟化鎂鈍化技術處理的銅鋅錫硫材料之表面電位由18.2mV上升至32.78mV,而晶界上較強的負電位形成之電場鈍化可進而減少電子電洞對之復合現象(electron-hole recombination)。導納頻譜分析(Admittance Spectroscopy)結果指出缺陷能量由220meV減至133meV,此結果可能為介面上氟化鎂產生的電場鈍化效應減少電子電洞對之復合所致,此效應亦可由氟化鎂處理後之太陽能電池較長的載子生命週期(carrier lifetime)印證。透過氟化鎂鈍化技術,本研究可同時使短路電流密度(Jsc)由 30.71 mA/cm2 提升至32.61 mA/cm2、開路電壓由0.44 V提升至0.46 V,最後將銅鋅錫硫太陽能電池之效率提升至9.36%。


    Thin film solar cells, based on Cu2ZnSn(S, Se)4 have attracted widespread interest, due to its high potential for a lower production cost than commercial solar cells. However, highest efficiency for the CZTSSe solar cell has only achieved 12.6% from IBM group in the USA and this is still lower than CIGS solar cell’s 21.7 % from ZSW (Zentrum für Sonnenenergie - und Wasserstoff-Forschung - or Center for Solar Energy and Hydrogen Research - Baden-Württemberg) group in Germany with similar structure. One of the critical issues in CZTSSe solar cells is Voc (open-circuit voltage) deficit. The Voc deficit in the CZTSSe solar cell due to Cu/Zn disorders and band gap fluctuation from non-uniform S/Se distribution have been investigated. In addition, several factors including low dielectric constant, large populations of defects, and un-passivated grain boundaries are issues that limit the Voc of CZTSSe solar cell.
    In this thesis, we enhance the Voc of CZTSSe solar cell without post-annealing treatments by inserting an alkaline earth fluoride (MgF2) to passivate grain boundaries (GBs) of CZTSSe surface. Direct and indirect effects of MgF2 at grain boundaries and near-interface region in the CZTSSe surface has been investigated in this study. We found that the electronic properties of the GBs are enhanced by MgF2 without post-annealing treatments. According to the scanning Kelvin probe microscopy results, the potential of the sample with MgF2 increases from 18.2 mV to 32.78 mV. This effect leads to a higher negative charge at GBs and forms an electric field passivation, reducing the electron-hole recombination. The results of admittance spectroscopy show that the defect energy level decreases from 220 meV to 133 meV, which is possibly caused by the electric field passivation from the MgF2 at the interface and reduction of the electron-hole recombination. Such mechanism can be also supported by a longer carrier lifetime for the sample with MgF2 (30.6 ns) than pristine sample (20.3 ns). As a consequence, the current density (Jsc) and open circuit voltage (Voc) can be both improved from 30.71 mA/cm2 to 32.61 mA/cm2 and 0.44 V to 0.46 V, respectively. Finally, a CZTSSe solar cell with 9.36 % efficiency was achieved by using 10nm MgF2 without post-annealing treatments.

    Table of Contents Abstract i 摘要 iii Acknowledgements iv Table of Content v List of Figures vi List of Tables vii Chapter I Introduction 1 1.1 Status of Global Energy 1 1.2 Solar Cells Technology 2 1.3 Cu2ZnSn(S,Se)4 Solar Cell 8 1.3.1 Material Properties of Cu2ZnSn(S,Se)4 8 1.3.2 Nano Scale Defects and Secondary Phases in Cu2ZnSn(S,Se)4 10 1.3.3 Fabrication of Cu2ZnSn(S,Se)4 Solar Cell 13 1.3.4 Progress in Cu2ZnSn(S,Se)4 Solar Cell and Their Key Limitations 16 1.4 Motivation and Purpose 17 References 20 Chapter II Experimental Detail and Characterization Technique 25 2.1 Preparation of CZTSSe as Absorber Layer 29 2.2 Device Fabrication of CZTSSe Solar Cells 31 2.3 Device Characterization and Measurements 33 2.3.1 Current Density-Voltage (J-V) Measurement 33 2.3.2 External Quantum Efficiency Measurement 34 2.3.3 Scanning Kelvin Probe Microscopy (SKPM) Measurement 36 2.3.4 Nano Auger Spectroscopy Characterization 38 2.3.5 Photoluminescence (PL) and Time-Resolved PL Measurement 38 2.3.6 Admittance Spectroscopy Measurement 39 References 42 Chapter III Result and Discussion 45 3.1. Device Characterization 45 3.2. Electronic Properties of Grain Boundaries at CZTSSe Surface 52 3.3. Electric Field Passivation from MgF2 on the Surface and Interface of CZTSSe 63 Chapter IV Conclusion and Future Outlook 69 4.1. Conclusion 69 4.2. Future Outlook 70 Supporting Information 71 References 72

    1.Xin, H., Vorpahl, S.M., Collord, A.D., Braly, I.L., Uhl, A.R., Krueger, B.W., Ginger, D.S., and Hillhouse, H.W., Lithium-Doping Inverts The Nanoscale Electric Field at The Grain Boundaries In Cu2ZnSn(S,Se)4 and Increases Photovoltaic Efficiency. Phys Chem Chem Phys, (2015). 17(37): 23859-66.
    2.https://en.wikipedia.org/wiki/Box_plot.
    3.Kim, J., Kim, G.Y., Jo, W., Yang, K.-J., Sim, J.-H., Kim, D.-H., and Kang, J.-K., Effects of Mo back-contact annealing on surface potential and carrier transport in Cu2ZnSnS4 thin[space]film solar cells. RSC Advances, (2016). 6(105): 103337-103345.
    4.Hegedus, S.S. and Shafarman, W.N., Thin-film solar cells: device measurements and analysis. Progress in Photovoltaics: Research and Applications, (2004). 12(2-3): 155-176.
    5.Misic, B., Pieters, B.E., Theisen, J.P., Gerber, A., and Rau, U., Shunt mitigation in ZnO:Al/i-ZnO/CdS/Cu(In,Ga)Se2 solar modules by the i-ZnO/CdS buffer combination. physica status solidi (a), (2015). 212(3): 541-546.
    6.Grenet, L., Fillon, R., Altamura, G., Fournier, H., Emieux, F., Faucherand, P., and Perraud, S., Analysis of photovoltaic properties of Cu2ZnSn(S,Se)4-based solar cells. Solar Energy Materials and Solar Cells, (2014). 126(Supplement C): 135-142.
    7.Tampo, H., Kim, K.M., Kim, S., Shibata, H., and Niki, S., Improvement of minority carrier lifetime and conversion efficiency by Na incorporation in Cu2ZnSnSe4 solar cells. Journal of Applied Physics, (2017). 122(2): 023106.
    8.Li, B.J., The Study of Grain Boundaries in Polycrystalline Thin-Film Solar Cells, in Electrical Engineering 2014, Stanford University. p. 30-35.
    9.Jiang, C.-S., M.A. Contreras, Repins, I., Moutinho, H.R., Noufi, R., and Al-Jassim, M.M., Determination of Grain Boundary Charging in Cu(In,Ga)Se2 Thin Films in 38th IEEE Photovoltaic Specialists Conference Austin, Texas, (2012).
    10.Lei, C., Li, C.M., Rockett, A., and Robertson, I.M., Grain boundary compositions in Cu(InGa)Se2. Journal of Applied Physics, (2007). 101(2): 024909.
    11.Baier, R., Abou-Ras, D., Rissom, T., Lux-Steiner, M.C., and Sadewasser, S., Symmetry-dependence of electronic grain boundary properties in polycrystalline CuInSe2 thin films. Applied Physics Letters, (2011). 99(17): 172102.
    12.Sadewasser, S., Experimental Technique and Working Modes. S. Sadewasser and T. Glatzel (eds.), Kelvin Probe Force Microscopy,Springer, (2012). 48: 7.
    13.Veeco, Instruction Manual, Dimension Icon with ScanAsyst. (2010): 004-1023.
    14.Baier, R., Leendertz, C., Abou-Ras, D., Lux-Steiner, M.C., and Sadewasser, S., Properties Of Electronic Potential Barriers at Grain Boundaries in Cu(In,Ga)Se2 Thin films. Sol. Energy Mat. Sol. Cells, (2014). 130: 124–131
    15.Sardashti, K., Haight, R., Gokmen, T., Wang, W., Chang, L.-Y., Mitzi, D.B., and Kummel, A.C., Impact of Nanoscale Elemental Distribution in High-Performance Kesterite Solar Cells Advanced Energy Materials, (2015). 5: 1402180.
    16.C.-S Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho, and Al-Jassim, M.M., Does The Local Built-In Potential on Grain Boundaries of Cu(In,Ga)Se2 Thin films Benefit Photovoltaic Performance of the Device? Applied Physics Letters, (2004). 85: 2625.
    17.Nicoara, N., Lepetit, T., Arzel, L., Harel, S., Barreau, N., and Sadewasser, S., Effect Of The Kf Post-Deposition Treatment on Grain Boundary Properties In Cu(In,Ga)Se2 Thin Films. Scientific Report, (2016). 7: 41361.
    18.Hafemeister, M., Siebentritt, S., Albert, J., Lux-Steiner, M.C., and Sadewasser, S., Large Neutral Barrier at Grain Boundaries in Chalcopyrite Thin Films. Physical Review Letters, (2010). 104(19): 196602.
    19.Yun, J.S., Ho-Baillie, A., Huang, S., Woo, S.H., Heo, Y., Seidel, J., Huang, F., Cheng, Y.-B., and Green, M.A., Benefit of Grain Boundaries in Organic-Inorganic Halide Planar Perovskite Solar Cells. The Journal of Physical Chemistry Letters, (2015). 6(5): 875-880.
    20.H. R. Moutinhoa, R. G. Dhere, C.-S. Jiang, Yanfa Yan, D. S. Albin, and M. M. Al-Jassim, Investigation of Potential and Electric Field Profiles in Cross Sections of CdTe/Cds Solar Cells using Scanning Kelvin Probe Microscopy. Journal of Applied Physics, (2010). 108(7): 074503.
    21.Hsu, W.-W., Chen, J.Y., Cheng, T.-H., Lu, S.C., Ho, W.-S., Chen, Y.-Y., Chien, Y.-J., and Liu, C.W., Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3. Applied Physics Letters, (2012). 100(2): 023508.
    22.Chen, S., Walsh, A., Gong, X.-G., and Wei, S.-H., Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers. Advanced Materials, (2013). 25(11): 1522–1539.
    23.Larsen, J.K., Li, S.-Y., Scragg, J.J.S., Ren, Y., Hägglund, C., Heinemann, M.D., Kretzschmar, S., Unold, T., and Platzer-Björkman, C., Interference effects in photoluminescence spectra of Cu2ZnSnS4 and Cu(In,Ga)Se2 thin films. Journal of Applied Physics, (2015). 118(3): 035307.
    24.Chantana, J., Arai, H., and Minemoto, T., Trap-assisted recombination for ohmic-like contact at p-type Cu(In,Ga)Se2/back n-type TCO interface in superstrate-type solar cell. Journal of Applied Physics, (2016). 120(4): 045302.
    25.Bercegol, A., Chacko, B., Klenk, R., Lauermann, I., Lux-Steiner, M.C., and Liero, M., Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook. Journal of Applied Physics, (2016). 119(15): 155304.
    26.Kaur, K., Kumar, N., and Kumar, M., Strategic review of interface carrier recombination in earth abundant Cu-Zn-Sn-S-Se solar cells: current challenges and future prospects. Journal of Materials Chemistry A, (2017). 5(7): 3069-3090.
    27.Wu, W., Cao, Y., Caspar, J.V., Guo, Q., Johnson, L.K., Mclean, R.S., Malajovich, I., and Choudhury, K.R., Characterization of CZTSSe photovoltaic device with an atomic-layer-deposited passivation layer. Applied Physics Letters, (2014). 105(4): 042108.
    28.Lang, D.V., Hartman, R.L., and Schumaker, N.E., Capacitance spectroscopy studies of degraded AlxGa1−xAs DH stripe‐geometry lasers. Journal of Applied Physics, (1976). 47(11): 4986-4992.
    29.Walter, T., Herberholz, R., Müller, C., and Schock, H.W., Determination of defect distributions from admittance measurements and application to Cu(In,Ga)Se2 based heterojunctions. Journal of Applied Physics, (1996). 80(8): 4411-4420.
    30.Lin, Y.-R., Tunuguntla, V., Wei, S.-Y., Chen, W.-C., Wong, D., Lai, C.-H., Liu, L.-K., Chen, L.-C., and Chen, K.-H., Bifacial sodium-incorporated treatments: Tailoring deep traps and enhancing carrier transport properties in Cu2ZnSnS4 solar cells. Nano Energy, (2015). 16(Supplement C): 438-445.

    QR CODE