簡易檢索 / 詳目顯示

研究生: 蘇國樺
Kuo-Hua Su
論文名稱: 設計電解槽以改善電解水之氣泡干擾及增加質傳速率於電催化甘油氧化反應
Electrolyzer design for reducing the bubble resistance in the hydrogen evolution reaction and increase the mass transfer rate in the glycerol electrooxidation reaction
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 劉懷勝
Hwai-Shen Liu
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 103
中文關鍵詞: 電解槽電解水氣泡干擾電催化甘油氧化反應
外文關鍵詞: Electrolyzer, bubble resistance, hydrogen evolution reaction, glycerol electrooxidation reaction
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


目錄 摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 研究方案 1 第二章 文獻回顧與探討 2 2.1 氫能源 2 2.2 電化學產氫 2 2.3 解耦水電解 (Decoupled Water Splitting) 4 2.4 電催化甘油氧化 5 2.4.1 理論熱力學 6 2.4.2 質量傳遞速率影響 6 2.5 質量傳遞 8 2.5.1 質傳機制 8 2.5.2 極限電流法 (Limiting-Current Technique) 8 2.6 氣泡現象 10 2.6.1 作用於氣泡之力平衡 10 2.6.2 覆蓋於電極表面之氣泡 18 2.6.3 分散於溶液之氣泡 23 2.7 旋轉盤反應器 Spinning disc reactor (SDR) 26 第三章 實驗設備與方法 29 3.1 實驗裝置 29 3.1.1 對稱式電極裝置 29 3.1.2 非對稱式電極裝置 29 3.1.3 裝置之渠道與電極尺寸 30 3.2 實驗設備 31 3.2.1 電解液循環設備 31 3.2.2 分析儀器 32 3.3 實驗藥品 33 3.4 實驗流程 33 3.5 實驗步驟 34 3.6 電化學量測項目基礎理論 35 3.6.1 循環伏安法(Cyclic voltammetry, CV) 35 3.6.2 線性掃描伏安法(Linear sweep voltammetry, LSV) 36 3.6.3 計時安培法(Chronoamperometry) 36 3.6.4 交流阻抗法(AC impedance) 37 第四章 實驗結果與討論 38 4.1 氣泡影響 38 4.1.1 分析方法 38 4.1.2 流速改善效果 40 4.1.3 於不同導電度電解液中的影響量 42 4.2 電極擺設及電極間距離探討 44 4.2.1 對稱式電極擺設探討 44 4.2.2 非對稱式電極擺設探討 52 4.2.3 對稱與非對稱系統比較 62 4.3 溶液黏度影響 65 4.4 質傳速率影響 71 4.4.1 質傳係數測量 71 4.4.2 質傳速率影響電催化甘油氧化反應 75 第五章 結論 92 參考文獻 94 附錄 100 非對稱式系統設計 100 電極擺放方式 101

[1] S.Marini, P.Salvi, P.Nelli, R.Pesenti, M.Villa, M.Berrettoni, G.Zangari, Y.Kiros, Advanced alkaline water electrolysis, Electrochim. Acta. 82 (2012) 384–391.
[2] O.Schmidt, A.Gambhir, I.Staffell, A.Hawkes, J.Nelson, S.Few, Future cost and performance of water electrolysis: An expert elicitation study, Int. J. Hydrogen Energy. 42 (2017) 30470–30492.
[3] M.Carmo, D.L.Fritz, J.Mergel, D.Stolten, A comprehensive review on PEM water electrolysis, Int. J. Hydrogen Energy. 38 (2013) 4901–4934.
[4] S.Shiva Kumar, V.Himabindu, Hydrogen production by PEM water electrolysis – A review, Mater. Sci. Energy Technol. 2 (2019) 442–454.
[5] W.Li, N.Jiang, B.Hu, X.Liu, F.Song, G.Han, T.J.Jordan, T.B.Hanson, T.L.Liu, Y.Sun, Electrolyzer Design for Flexible Decoupled Water Splitting and Organic Upgrading with Electron Reservoirs, Chem. 4 (2018) 637–649.
[6] B.Katryniok, H.Kimura, E.Skrzyńska, J.S.Girardon, P.Fongarland, M.Capron, R.Ducoulombier, N.Mimura, S.Paul, F.Dumeignil, Selective catalytic oxidation of glycerol: Perspectives for high value chemicals, Green Chem. 13 (2011) 1960–1979.
[7] M.Simões, S.Baranton, C.Coutanceau, Electrochemical valorisation of glycerol, ChemSusChem. 5 (2012) 2106–2124.
[8] E.Antolini, Glycerol electro-oxidation in alkaline media and Alkaline direct glycerol fuel cells, Catalysts. 9 (2019) 980.
[9] M.S.E.Houache, K.Hughes, E.A.Baranova, Study on catalyst selection for electrochemical valorization of glycerol, Sustain. Energy Fuels. 3 (2019) 1892–1915.
[10] Y.Kang, W.Wang, Y.Pu, J.Li, D.Chai, Z.Lei, An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd, Chem. Eng. J. 308 (2017) 419–427.
[11] R.M.A.Tehrani, S.Ab Ghani, Electrocatalysis of free glycerol at a nanonickel modified graphite electrode and its determination in biodiesel, Electrochim. Acta. 70 (2012) 153–157.
[12] V.L.Oliveira, C.Morais, K.Servat, T.W.Napporn, P.Olivi, K.B.Kokoh, G.Tremiliosi-Filho, Kinetic Investigations of Glycerol Oxidation Reaction on Ni/C, Electrocatalysis. 6 (2015) 447–454.
[13] E.Habibi, H.Razmi, Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media, Int. J. Hydrogen Energy. 37 (2012) 16800–16809.
[14] M.Chatti, J.L.Gardiner, M.Fournier, B.Johannessen, T.Williams, T.R.Gengenbach, N.Pai, C.Nguyen, D.R.MacFarlane, R.K.Hocking, A.N.Simonov, Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C, Nat. Catal. 2 (2019) 457–465.
[15] J.R.Selman, C.W.Tobias, Mass-Transfer Measurements by the Limiting-Current Technique, in: T.B.Drew, G.R.Cokelet, J.W.Hoopes, T.B.T.-A. in C.E.Vermeulen (Eds.), Academic Press, 1978: pp. 211–318.
[16] P.Zhu, Y.Zhao, Mass Transfer Performance of Porous Nickel Manufactured by Lost Carbonate Sintering Process, Adv. Eng. Mater. 19 (2017) 1–8.
[17] M.H.Abdel-Aziz, I.Nirdosh, G.H.Sedahmed, Liquid – Solid mass transfer behaviour of heterogeneous reactor made of a rotating tubular packed bed of spheres, Int. J. Heat Mass Transf. 126 (2018) 1129–1137.
[18] E.B.Cavalcanti, F.Coeuret, Mass transfer between a liquid and a binary rotating/fixed disc system in a closed cylinder, J. Appl. Electrochem. 26 (1996) 655–663.
[19] W.M.Taama, R.E.Plimley, K.Scott, Influence of supporting electrolyte on ferricyanide reduction at a rotating disc electrode, Electrochim. Acta. 41 (1996) 549–551.
[20] J.F.Klausner, R.Mei, D.M.Bernhard, L.Z.Zeng, Vapor bubble departure in forced convection boiling, Int. J. Heat Mass Transf. 36 (1993) 651–662.
[21] G.E.Thorncroft, J.F.Klausner, Bubble forces and detachment models, Multiph. Sci. Technol. 13 (2001) 35–76.
[22] D.Chen, L.M.Pan, S.Ren, Prediction of bubble detachment diameter in flow boiling based on force analysis, Nucl. Eng. Des. 243 (2012) 263–271.
[23] D.Zhang, K.Zeng, Evaluating the behavior of electrolytic gas bubbles and their effect on the cell voltage in alkaline water electrolysis, Ind. Eng. Chem. Res. 51 (2012) 13825–13832.
[24] R.Kumar, N.Maloth, Scholarship @ Western The Study of Bubble Growth Hydrodynamics in the Supersaturated Liquids, The University of Western Ontario, 2020.
[25] M.M.Bakker, D.A.Vermaas, Gas bubble removal in alkaline water electrolysis with utilization of pressure swings, Electrochim. Acta. 319 (2019) 148–157.
[26] M.Wang, Z.Wang, Z.Guo, Understanding of the intensified effect of super gravity on hydrogen evolution reaction, Int. J. Hydrogen Energy. 34 (2009) 5311–5317.
[27] J.Eigeldinger, H.Vogt, The bubble coverage of gas-evolving electrodes in a flowing electrolyte, 2000.
[28] K.Terasaka, S.Murata, K.Tsutsumino, Bubble distribution in shear of flow of highly viscous liquids, Can. J. Chem. Eng. 81 (2003) 470–475.
[29] R.E.D.LaRue, C.W.Tobias, On the Conductivity of Dispersions, J. Electrochem. Soc. 106 (1959) 827.
[30] F.Hine, K.Murakami, Bubble Effects on the Solution IR Drop in a Vertical Electrolyzer Under Free and Forced Convection, J. Electrochem. Soc. 127 (1980) 292–297.
[31] G.B.Darband, M.Aliofkhazraei, S.Shanmugam, Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting, Renew. Sustain. Energy Rev. 114 (2019) 109300.
[32] S.D.Pask, O.Nuyken, Z.Cai, The spinning disk reactor: An example of a process intensification technology for polymers and particles, Polym. Chem. 3 (2012) 2698–2707.
[33] X.SenWu, Y.Luo, G.W.Chu, Y.C.Xu, L.Sang, B.C.Sun, J.F.Chen, Visual Study of Liquid Flow in a Spinning Disk Reactor with a Hydrophobic Surface, Ind. Eng. Chem. Res. 57 (2018) 7692–7699.
[34] P.Granados Mendoza, S.J.C.Weusten, M.T.deGroot, J.T.F.Keurentjes, J.C.Schouten, J.van derSchaaf, Liquid–solid mass transfer to a rotating mesh electrode in a rotor–stator spinning disc configuration, Int. J. Heat Mass Transf. 104 (2017) 650–657.
[35] P.T.Kissinger, W.R.Heineman, Cyclic voltammetry, J. Chem. Educ. 60 (1983) 702–706.
[36] Lacey, Viscosity of Aqueous Glycerol Solutions, J. Ana. Chem. Soc. 49 (1927) 1174–83.
[37] K.Takamura, H.Fischer, N.R.Morrow, Physical properties of aqueous glycerol solutions, J. Pet. Sci. Eng. 98–99 (2012) 50–60.
[38] S.J.Konopka, B.McDuffie, Diffusion Coefficients of Ferri- and Ferrocyanide Ions in Aqueous Media, Using Twin-Electrode Thin-Layer Electrochemistry, Anal. Chem. 42 (1970) 1741–1746.
[39] G.Nelissen, B.Van DenBossche, J.Deconinck, A.VanTheemsche, C.Dan, Laminar and turbulent mass transfer simulations in a parallel plate reactor, J. Appl. Electrochem. 33 (2003) 863–873.
[40] M.Sunitha, N.Durgadevi, S.Asha, T.Ramachandran, Performance evaluation of nickel as anode catalyst for DMFC in acidic and alkaline medium, Ranliao Huaxue Xuebao/Journal Fuel Chem. Technol. 46 (2018) 592–599.
[41] K.L.Nagashree, M.F.Ahmed, Electrocatalytic oxidation of methanol on Ni modified polyaniline electrode in alkaline medium, J. Solid State Electrochem. 14 (2010) 2307–2320.
[42] E.Habibi, H.Razmi, Glycerol electrooxidation on Pd, Pt and Au nanoparticles supported on carbon ceramic electrode in alkaline media, Int. J. Hydrogen Energy. 37 (2012) 16800–16809.

無法下載圖示 全文公開日期 2026/08/18 (校內網路)
全文公開日期 2026/08/18 (校外網路)
全文公開日期 2026/08/18 (國家圖書館:臺灣博碩士論文系統)
QR CODE