簡易檢索 / 詳目顯示

研究生: 黃明俥
MING-JIU HUANG
論文名稱: 彩色金屬塗料外貌特性之多角度測量與情感模式之建立
Emotion Models for Metallic Paint band on Appearance Attribute from A Multi-Angle Measuring system
指導教授: 陳鴻興
Hung-Shing Chen
羅明
Ronnier Luo
口試委員: 陳一平
I-ping Chen
陳怡君
Yi-Chun Chen
李文淵
Wen-Yuan Lee
孫沛立
Pei-Li Sun
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 84
中文關鍵詞: 彩色金屬塗料情感模型閃耀感主成分分析「色彩、材質與表面處理」
外文關鍵詞: Colored metallic paints, Emotional models, Sparkle, PCA (Principal Component Analysis), CMF (Color, Materials & Finish)
相關次數: 點閱:262下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的是從多角度測量彩色金屬塗料中,獲得的多角度外貌數據,與觀察者觀看金屬塗料的評價情感反應,根據兩者數據開發了彩色金屬塗料外貌的情感模式。本論文設計了兩個實驗來分析探究彩色金屬塗料,實驗一為物理量測實驗,使用多角度分光光度計測量不同角度(分別為15°、45°和75°)下的彩色金屬塗料外貌,測量外貌參數(例如:色相,彩度,飽和度,明度,閃耀值,粗糙度和光澤度)。實驗二為心理物理實驗,利用在指向性光源及散射性光源從上而下,不同角度(15°、45°和75°)照射彩色金屬塗料樣板,再要求觀察者觀看且評估彩色金屬塗料板上的情感反應,包含閃耀感、粗糙感、明亮度、鮮豔度、價值感、華麗感、輕盈感、流線感、穩重感、新潮感、強壯感、有趣感、速度感及復古感等14種情感形容詞。
    最後,利用主成分分析來分析觀察者的情緒反應值與多角度分光光度計所量測的外貌數值,分別在指向性光源與散射性光源下,我們建立預測彩色金屬塗料外貌屬性之「奢華度」和「時尚度」情感模式,因此情感模型可以有效預測彩色金屬塗料外貌屬性與人類情感反應之間的關聯性,對於色彩工程師及CMF設計師相當有幫助。


    The objective of this study aims to investigate the agreement between multiangle appearance data obtained from the multiangle measurement and the rating scores given by observers in terms of sparkle and coarseness. The metallic emotional models for colored metallic paints were developed on the basis of two experimental results.
    Two kinds of experiments were designed in this study. Experiment 1 involved measuring metallic paint appearances, and a multiangle spectrophotometer was used for measuring the appearance parameters (such as hue, chroma, saturation, lightness, sparkle, coarseness, and gloss) of metallic coating samples under multiple measuring angles (15°, 45°, and 75°). In Experiment 2, observers were asked to visually assess colored metallic test samples under directional and diffuse light conditions. The observers assessed the test samples, illuminated from the top, with three observation angles (15°, 45°, and 75°). Principal Component Analysis was performed to analyze the observers’ emotional responses.
    Finally, the metallic emotional models consisted of “degree of expensiveness” and “degree of fashion” were constructed. In consequence, the two principal components were sufficient to explain most of emotional responses of the metallic color samples. The model is expected to be benefit to color engineers and CMF (Color, Materials & Finish) designers for acquiring an understanding of the emotional reaction to more colored metallic paints.

    中文摘要………………………………………………………………………………………………………………………I Abstract…………………………………………………………………………………………………………………II 誌謝………………………………………………………………………………………………………………………………III 目錄…………………………………………………………………………………………………………………………………IV 圖目錄…………………………………………………………………………………………………………………………VII 表目錄……………………………………………………………………………………………………………………………VIII 第一章 緒論…………………………………………………………………………………………………………1 1.1 研究背景………………………………………………………………………………………………1 1.2 研究動機………………………………………………………………………………………………2 1.2.1 CMF的C:色彩………………………………………………………………………………………3 1.2.2 CMF的M:材質………………………………………………………………………………………7 1.2.3 CMF的F:表面處理……………………………………………………………………………9 1.3 論文架構……………………………………………………………………………………………12 第二章 文獻探討………………………………………………………………………………………………14 2.1 利用影像分析來探究物體表面特性………………………………………14 2.2 物體表面物理特徵與光線…………………………………………………………15 2.3 電腦圖學與實際物體光影變化…………………………………………………16 2.4 物體表面特徵與視覺心理情感統計………………………………………17 2.5 其他主成分分析案例……………………………………………………………………18 第三章 實驗原理…………………………………………………………………………………………………20 3.1 彩色金屬塗料……………………………………………………………………………………20 3.2 物體表面特徵…………………………………………………………………………………21 3.3 多角度分光光度計原理………………………………………………………………23 3.4 光源特性種類……………………………………………………………………………………26 3.5 光學對於物體特性…………………………………………………………………………28 3.6 主成分分析…………………………………………………………………………………………29 第四章 實驗流程設計………………………………………………………………………………………31 4.1 實驗一:金屬塗料量測實驗…………………………………………………………33 4.1.1 彩色金屬塗料樣板-色彩變化………………………………………………………………33 4.1.2 彩色金屬塗料樣板-閃耀度變化…………………………………………………………35 4.2 實驗二:心理物理實驗….………………………………………………………………37 4.2.1 受測者背景……………………………………………………………………………………………………37 4.2.2 觀測環境及旋轉平台………………………………………………………………………………37 4.2.3 視覺評估表設計…………………………………………………………………………………………41 4.3 實驗分析流程………………………………………………………………………………………44 第五章 實驗結果分析…….………………………………………………………………………………46 5.1 評估分數之性別間的差異……………………………………………………………48 5.2 金屬塗料之主成分及相關係數分析…………………………………………49 5.3 彩色金屬塗料之情感模型建立…………………………………………………56 第六章 總結與未來方向…………………………………………………………………………………59 6.1研究結論……………………………………………………………………………………………………………59 6.2未來研究方向……………………………………………………………………………………………………60 參考文獻………………………………………………………………………………………………………………………62 附錄1……………………………………………………………………………………………………………………………68 附錄2……………………………………………………………………………………………………………………………72 附錄3………………………………………………………………………………………………………………………………74

    [1] C. S. McCamy, “Observation and measurement of the appearance of metallic materials. Part I. Macro appearance”, Color research and application, 21, pp. 292–304 (1996).
    [2] C. S. McCamy, “Observation and measurement of the appearance of metallic materials. Part II. Micro appearance”, Color research and application, 23, pp. 362–373 (1998).
    [3]大田登 著,陳鴻興、陳詩涵 編譯,色彩工程學:理論與應用,全華圖書股份有限公司,台北 (2008)。
    [4]黃日鋒、詹文鑫、陳鴻興、胡國瑞、徐道義、孫沛立、羅梅君 編著,陳鴻興 編審,顯示色彩工程學,全華圖書股份有限公司,台北 (2011)。
    [5] Ashby M., & Johnson K., “The art of materials selection”, Materials Today, pp. 24–35 (2003).
    [6] van Kesteren, “Product designers' information needs in materials selection”, Materials & Design, 29, pp. 133–145 (2008).
    [7] van Kesteren, Stappers P. & de Bruijn J., “Materials in product selection: Tools for including user-interaction aspects in materials selection”, International Journal of Design, 1, pp. 41–55 (2007).
    [8] Karana E., Hekkert P. & Kandachar P., “Material considerations in product design: A survey on crucial material aspects used by product designers”, Materials and Design, 29, pp. 1081–1089 (2008).
    [9] Karana E., Hekkert P. & Kandachar P., “Meanings of materials through sensorial properties and manufacturing processes”, Materials & Design, 30, pp. 2778–2784 (2009).
    [10] Karana E., Hekkert P. & Kandachar, P., “A tool for meaning driven materials selection, Materials and Design, 31, pp. 2932–2941 (2010).
    [11] ASTM B879-17, “Standard practice for applying non-electrolytic conversion coatings on magnesium and magnesium alloys”
    [12] ASTM B921-08, “Standard specification for non-hexavalent chromium conversion coatings on aluminum and aluminum alloys” (2013)
    [13] Schneirla T. C., “An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal”, Nebraska Symposium on Motivation, 7, pp. 1–43 (1959).
    [14] Elliot A. J. & Maier M. A., “Color and psychological functioning”, Color Psychology, 16, pp. 250–254 (2007).
    [15] Barrow H. G. & Tenenbaum J. M., “Recovering intrinsic scene characteristics from images. In A. Hanson & R. Riseman (Eds.)”, Computer vision systems, New York: Academic Press, 12, pp. 3–26 (1978).
    [16] Beck J. & Prazdny K., “Highlights and the perception of glossiness”, Perception & Psychophysics, 30, pp. 407–410 (1981).
    [17] Norman J. F., Todd J. T. & Orban G. A., “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information”, Psychological Science, 15, pp. 565–570 (2004).
    [18] Todd J. T., Norman J. F. & Mingolla E., “Lightness constancy in the presence of specular highlights”, Psychological Science, 15, pp. 33–39 (2004).
    [19] Wendt G., Faul F. & Mausfeld R., “Highlight disparity contributes to the authenticity and strength of perceived glossiness”, Journal of Vision, 8(1):14, pp. 1–10 (2008).
    [20] Caniard F. & Fleming R., “Distortion in 3D shape estimation with changes in illumination. Proceedings of the 4th Symposium on Applied Perception in Graphics and Visualization”, 253, pp. 99–105 (2007).
    [21] Mingolla E. & Todd J. T., “Perception of solid shape from shading. Biological Cybernetics”, 53, pp. 137–151. (1986).
    [22] Braje W. L. & Knill D. C., “Apparent surface shape affects perceived specular reflectance of curved surfaces”, Investigative Ophthalmology and Visual Science Supplement, 35, pp. 16–28 (1994).
    [23] Todd J. T., Norman J. F., Koenderink J. J. & Kappers A. M. L., “Effects of texture, illumination, and surface reflectance on stereoscopic shape perception. Perception”, 26, pp. 807–822 (1997).
    [24] Fleming R. W., Torralba A. & Adelson E. H., “Specular reflections and the perception of shape”, Journal of Vision, 4(9):10, pp. 798–820 (2004).
    [25] Christian EUGÈNE, “Measurement of total visual appearance: A CIE challenge of soft metrology”, 12th IMEKO TC1 & TC7 Joint Symposium on Man, Science & Measurement, pp. 61–65 (2008).
    [26] Clarke T. & Costall A., “The emotional connotations of color: a qualitative investigation”, Color Res, 33, pp. 406–410 (2008).
    [27] Beck J. & Prazdny K., “Highlights and the perception of glossiness”, Perception & Psychophysics, 30, pp. 407–410 (1981).
    [28] Norman J. F., Todd J. T. & Orban G. A., “Perception of three-dimensional shape from specular highlights, deformations of shading, and other types of visual information”, Psychological Science, 15, pp. 565–570 (2004).
    [29] Wendt G., Faul F. & Mausfeld R., “Highlight disparity contributes to the authenticity and strength of perceived glossiness”, Journal of Vision, 8(1):14, pp. 1–10 (2008).
    [30] Sergey E., Konstantin K. & Karol M., “Rendering pearlescent appearance based on paint-composition modelling”, 20, pp. 3–6. (2001).
    [31] Li-Chen Ou, M. Ronnier Luo, Andree Woodcock, & Angela Wright, “A study of colour Emotion and color Preference. Part I: Colour emotions for single colors”, Color research and application. pp. 232–240 (2003).
    [32] Li-Chen Ou, M. Ronnier Luo, Andree Woodcock & Angela Wright, “A study of colour emotion and color preference. Part II: Colour emotions for two-colors combinations.” Color research and application. pp. 292–298 (2004).
    [33] Bowers, Nijman, Simpson & Jones, “The relationship between leadership, team working, structure, burnout and attitude to patients on acute psychiatric wards.” Soc Psychiatry Psychiatr Epidemiol. pp. 143–148 (2011).
    [34] Ka’zmierczak & Cavan G., “Surface water flooding risk to urban communities: Analysis of vulnerability, hazard and exposure.” Landscape and Urban Planning. pp. 185–197 (2011).
    [35] Erener A., “Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection.” International Journal of Applied Earth Observation and Geoinformation. pp. 397–408 (2013)
    [36] Mahmud T. & Prowse M., “Corruption in cyclone preparedness and relief efforts in coastal Bangladesh: Lessons for climate adaptation?” Global Environmental Change, pp. 933–943 (2012).
    [37] Wei Ji., Mike R. Pointer, Ronnier M. Luo & John Dakin., “Gloss as an aspect of the measurement of appearance”, Optical Society of America. pp. 22–33 (2005).
    [38] S. Kitaguchi, Ronnier M. Luo, S. Westland, E. J. J. Kirchner, & G. J. van den Kieboom., “Application of HDR imaging to modeling of glints in metallic coatings”, in 14th Color Imaging Conference Final Program and Proceedings. pp. 197 (2006).
    [39] W. L. Chou., “Evaluation of lightness difference and metallic colour difference”, PhD. Thesis (University of Derby), (2003).
    [40] S. Kitaguchi, “Modeling texture appearance of gonioap-parent objects”, PhD. Thesis (University of Leeds), (2008).
    [41] Z. Huang, H. Xu, Ronnier M. Luo, G. Cui, & H. Feng., “Assessing total differences for effective samples having variations in color, coarseness, and glint”, Chinese Optics Letter 8, pp. 717–721 (2010).
    [42] Georg A. Klein, “Industrial Color Physics”, Springer New York Dordrecht Heidelberg London, pp. 204–205 (2010).
    [43] W. L. Chou, “Evaluation of lightness difference and metallic colour difference”, PhD. Thesis (University of Derby), (2003).
    [44] Z. Huang, H. Xu, Ronnier M. Luo, G. Cui, & H. Feng., “Assessing total differences for effective samples having variations in color, coarseness, and glint”, Chinese Optics Letter 8, 7, pp. 717–721 (2010).
    [45] John Strutt, “On the light from the sky, its polarization and colour”, Philosophical Magazine, 41, pp. 107–120 & pp. 274–279 (1871).
    [46] Raman, C. V., “A new radiation”, Indian Journal of Physics. 2, pp. 387–398 (1928).
    [47] Eric Kirchner, et al., “Observation of Visual Texture of Metallic and Pearlescent Materials”, Color research and application, 32, pp. 256–266 (2007).
    [48] Eric Kirchner, L. Njo, K. d. Haas, M. Rosler, “Coarseness and glints”, European Coatings Journal, pp. 46–54 (2006).
    [49] http://www.color-blindness.com/
    [50] Pearson, K., “On lines and planes of closest fit to systems of points in space”, Philosophical Magazine., 2, pp. 559–572 (1901).
    [51] A. C. Rencher, “Multivariate statistical inference and applications”, John Wily and Sons, pp. 102–105 (1998).
    [52] Snider, J. G. & Osgood, C. E., “Semantic Differential Technique: A Sourcebook”, Chicago: Aldine Publishing, 96, pp.115–120 (1969).
    [53] Rafal B., Eric B., Jeff M., Philip H & Jonathan D. C., “The physics of optimal decision making: A formal analysis of models of performance in two-alternative forced-choice tasks”, Psychological Review – Optimal Decision Making. 113, pp. 700–765 (2006).
    [54] T. Nakamura, H. Hoshino, T. Sato & K. Kajiwara, “Attempt for quantitative evaluation of cool-warm colour image”, SeniGakkaishi, 52, pp. 27–31 (1996).
    [55] T. Sato, K. Kajiwara, T. Nakamura & H. Hoshino, “Quantitative assessment of “light-dark”, “deep-pale” and “heavy-light” colour images”, SeniGakkaishi, 53, pp. 7–14 (1997).

    QR CODE