簡易檢索 / 詳目顯示

研究生: 蔡承哲
Cheng-Zhe Cai
論文名稱: 結合主成分分析法的隨機森林模型於電力網路大數據預測分析
Principal Component Analysis-based Random Forest Models for Big Data Predictive Analytics on Power Network Quality
指導教授: 羅士哲
Shih-Che Lo
口試委員: 曹譽鐘
Yu-Chung Tsao
曾世賢
Shih-Hsien Tseng
羅士哲
Shih-Che Lo
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 智慧電網工業4.0機器學習電網穩定性隨機森林旋轉森林
外文關鍵詞: Smart Grid, Industry 4.0, Machine Learning, Grid Stability, Random Forest, Rotational Forest
相關次數: 點閱:177下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧電網是一種先進的輸電網路,它協調電力網路中的電力供應並即時為生產者、營運商和消費者提供資訊。由於工業4.0的發展與人口增加導致電力需求與日俱增,因此需要穩定的智慧電網系統來滿足大量的電力需求。本研究專注於預測最近提出的分散式智慧電網控制(DSGC)系統的穩定性,該系統考慮了電力消費者和生產者的反應時間、電力價格彈性係數、生產與消耗的電力等要素。
    本研究專注於用人工智慧領域中的機器學習方法預測電網穩定性,本研究以集成式學習中的隨機森林、旋轉森林模型為基礎,提出三種新的模型,分別為稀疏旋轉森林(Sparse Rotation Forest)、增強稀疏旋轉森林(Strength Sparse Rotation Forest)、樹加權稀疏旋轉森林(Tree Weighting Sparse Rotation Forest)。
    本研究使用RMSE作為模型效能評估指標,利用k-fold交叉驗證的方式確認模型穩定度,且與原始的旋轉森林、隨機森林相比皆有更高的準確率。最後本研究也將所提出的模型與六種經典的機器學習模型進行比較,分別為決策樹、線性回歸模型、K-近鄰、梯度提升樹、支援向量回歸、多層感知器,實驗結果顯示本研究所提出的模型皆有更高的準確率預測智慧電網穩定性。


    A smart grid is an advanced transmission grid that coordinates the power supply in the power grid and provides information to producers, operators, and consumers in real time. Due to the development of Industry 4.0 and the increase in population, power demand is increasing daily so a stable smart grid system is required to meet the large power demand. This study predicts the stability of a recently proposed Decentralized Smart Grid Control (DSGC) system that considers factors such as the reaction time of electricity consumers and producers, the electricity price elasticity coefficient, and the electricity produced and consumed.
    This thesis focuses on using machine learning methods in the field of artificial intelligence to predict power grid stability. Based on random forest and rotation forest models in integrated learning, this study proposes three novel machine learning models, called Sparse Rotation Forest Model, Strength Sparse Rotation Forest Model, and Tree Weighting Sparse Rotation Forest Model.
    We use RMSE as the model performance evaluation index and perform k-fold cross-validation to confirm the stability of the model and has better performance than the original rotation forest and random forest. Finally, this study also compares the proposed model with six classic machine learning models, called decision tree, linear regression model, K-nearest neighbor, gradient boosting decision tree, support vector regression, and multilayer perceptron. The experimental results show that the proposed models all have better performance in predicting the stability of smart grids.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 導論 1 1.1研究背景與動機 1 1.2 研究目標 3 1.3 研究限制 3 1.4 研究貢獻 3 1.5 研究流程 4 第二章 文獻回顧 6 2.1大數據(Big Data) 6 2.2智慧電網穩定度預測(Smart Grid Stability Prediction) 8 2.3決策樹(Decision Tree) 10 2.4隨機森林(Random Forest) 13 2.5旋轉森林(Rotation Forest) 17 2.6主成分分析法(Principal Components Analysis) 19 2.7稀疏主成分分析(Sparse Principal Component Analysis) 22 第三章 預測模型設計 23 3.1隨機森林(Random Forest) 23 3.2樹加權隨機森林(Tree Weighting Random Forest) 24 3.3增強隨機森林(Strength Random Forest) 26 3.4旋轉森林(Rotation Forest) 28 3.5樹加權旋轉森林(Tree Weighting Rotation Forest) 29 3.6增強旋轉森林(Strength Rotation Forest) 31 3.7稀疏旋轉森林(Sparse Rotation Forest) 32 3.8增強稀疏旋轉森林(Strength Sparse Rotation Forest) 35 3.9樹加權稀疏旋轉森林(Tree Weighting Sparse Rotation Forest) 36 3.10模型訓練及評估指標 38 第四章 實驗與分析 39 4.1資料描敘 39 4.2實驗流程、模型架構、參數設定 43 4.3模型預測結果與討論 54 第五章 總結 58 5.1結論 58 5.2未來研究 59 Reference 60

    Abd Algani, Y. M., Ritonga, M., Bala, B. K., Al Ansari, M. S., Badr, M. and Taloba, A. I. (2022). Machine learning in health condition check-up: An approach using Breiman’s random forest algorithm. Measurement: Sensors, 23, 100406. (DOI: 10.1016/j.measen.2022.100406)
    Agrawal, D., Bernstein, P., Bertino, E., Davidson, S., Dayal, U., Franklin, M., ... & Widom, J. (2011). Challenges and opportunities with Big Data 2011-1.
    Al Nuaimi, E., Al Neyadi, H., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1), 1-15.
    Alazab, M., Khan, S., Krishnan, S. S. R., Pham, Q. V., Reddy, M. P. K. and Gadekallu, T. R. (2020). A multidirectional LSTM model for predicting the stability of a smart grid. IEEE Access, 8, 85454-85463. (DOI: 10.1109/ACCESS.2020.2991067)
    Arzamasov, V., Böhm, K. and Jochem, P. (2018). Towards concise models of grid stability. In 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) (pp. 1-6). (DOI: 10.1109/SmartGridComm.2018.8587498)
    Asha, N., Fiaz, A. S., Jayashree, J., Vijayashree, J. and Indumathi, J. (2022). Principal component analysis on face recognition using artificial firefly swarm optimization algorithm. Advances in Engineering Software, 174, 103296. (DOI: 10.1016/j.advengsoft.2022.103296)
    Bamberger, Y., Baptista, J., Belmans, R., Buchholz, B. M., Chebbo, M., Doblado, J. L. D. V., ... & Wasiluk-Hassa, M. (2006). Vision and strategy for europe’s electricity networks of the future: European technology PlatformSmartGrids.
    Berkooz, G., Holmes, P. and Lumley, J. L. (1993). The proper orthogonal decomposition in the analysis of turbulent flows. Annual review of fluid mechanics, 25(1), 539-575. (DOI:10.1146/annurev.fl.25.010193.002543)
    Berman, J. J. (2013). Principles of big data: preparing, sharing and analyzing complex information. Newnes.
    Botta, A., De Donato, W., Persico, V. and Pescapé, A. (2016). Integration of cloud computing and internet of things:a survey. Future generation computer systems, 56, 684-700. (DOI: 10.1016/j.future.2015.09.021)
    Breiman, L. (1984). Classification and Regression Trees, 1st Edition, Taylor & Francis Group, New York, USA. (DOI: 10.1201/9781315139470)
    Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. (DOI: 10.1007/BF00058655)
    Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. (DOI: 10.1023/A:1010933404324)
    Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (2017). Classification and regression trees. Routledge. (DOI:10.1201/9781315139470-8)
    Cai, T. T., Ma, Z. and Wu, Y. (2013). Sparse PCA:Optimal rates and adaptive estimation. The Annals of Statistics, 41(6), 3074-3110. (DOI:10.1214/13-AOS1178).
    Chen, M., Mao, S. and Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209. (DOI:10.1007/s11036-013-0489-0)
    Dewangan, F., Biswal, M., Patnaik, B., Hasan, S. and Mishra, M. (2022). Smart grid stability prediction using genetic algorithm-based extreme learning machine. In Electric Power Systems Resiliency (pp. 149-163). Academic Press. (DOI:10.1016/B978-0-323-85536-5.00011-4)
    Dileep, G. (2020). A survey on smart grid technologies and applications. Renewable energy, 146, 2589-2625. (DOI: 10.1016/j.renene.2019.08.092)
    Dong, X. L. and Srivastava, D. (2013). Big data integration. In 2013 IEEE 29th international conference on data engineering (ICDE) (pp. 1245-1248). (DOI:10.1109/ICDE.2013.6544914)
    Emani, C. K., Cullot, N. and Nicolle, C. (2015). Understandable big data: A survey. Computer science review, 17, 70-81. (DOI: 10.1016/j.cosrev.2015.05.002)
    Ezzahra, M. F., Nadia, A. F. I. F. I. and Imane, H. I. L. A. L. (2019, October). Big Data Dependability Opportunities and Challenges. In 2019 1st International Conference on Smart Systems and Data Science (ICSSD) (pp. 1-4). (DOI:10.1109/ICSSD47982.2019.9002676)
    Feng, C. M., Gao, Y. L., Liu, J. X., Zheng, C. H., Li, S. J. and Wang, D. (2016). A simple review of sparse principal components analysis. In International Conference on Intelligent Computing (pp. 374-383). Springer, Cham. (DOI:10.1007/978-3-319-42294-7_33)
    Feng, T., Wang, C., Zhang, J., Wang, B. and Jin, Y. F. (2022). An improved artificial bee colony-random forest (IABC-RF) model for predicting the tunnel deformation due to an adjacent foundation pit excavation. Underground Space, 7(4), 514-527. (DOI: 10.1016/j.undsp.2021.11.004)
    Feng, W., Huang, W. and Bao, W. (2019). Imbalanced hyperspectral image classification with an adaptive ensemble method based on SMOTE and rotation forest with differentiated sampling rates. IEEE Geoscience and Remote Sensing Letters, 16(12), 1879-1883. (DOI:10.1109/LGRS.2019.2913387)
    Gajjar, S., Kulahci, M. and Palazoglu, A. (2018). Real-time fault detection and diagnosis using sparse principal component analysis. Journal of Process Control, 67, 112-128. (DOI: 10.1016/j.jprocont.2017.03.005)
    Ganaie, M. A., Tanveer, M., Suganthan, P. N. and Snásel, V. (2022). Oblique and rotation double random forest. Neural Networks, 153, 496-517. (DOI: 10.1016/j.neunet.2022.06.012)
    Gantz, J. and Reinsel, D. (2011). Extracting value from chaos. IDC iview, 1142(2011), 1-12.
    Gastpar, M., Dragotti, P. L. and Vetterli, M. (2006). The distributed karhunen–loeve transform. IEEE Transactions on Information Theory, 52(12), 5177-5196. (DOI:10.1109/TIT.2007.907525)
    Ghosh, P., Neufeld, A. and Sahoo, J. K. (2022). Forecasting directional movements of stock prices for intraday trading using LSTM and random forests. Finance Research Letters, 46, 102280. (DOI: 10.1016/j.frl.2021.102280)
    Gorzałczany, M. B., Piekoszewski, J., & Rudziński, F. (2020). A modern data-mining approach based on genetically optimized fuzzy systems for interpretable and accurate smart-grid stability prediction. Energies, 13(10), 2559. (DOI:10.3390/en13102559)
    Hassan, D., Hussein, H. I. and Hassan, M. M. (2023). Heart disease prediction based on pre-trained deep neural networks combined with principal component analysis. Biomedical Signal Processing and Control, 79, 104019. (DOI: 10.1016/j.bspc.2022.104019)
    Ho, T. K. (1995). Random decision forests. In Proceedings of 3rd international conference on document analysis and recognition (Vol. 1, pp. 278-282). (DOI:10.1109/ICDAR.1995.598994)
    Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844. (DOI:10.1109/34.709601)
    Hong, H., Liu, J., Bui, D. T., Pradhan, B., Acharya, T. D., Pham, B. T., ... and Ahmad, B. B. (2018). Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena, 163, 399-413. (DOI: 10.1016/j.catena.2018.01.005)
    Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of educational psychology, 24(6), 417. (DOI:10.1037/h0071325)
    Hssina, B., Merbouha, A., Ezzikouri, H. and Erritali, M. (2014). A comparative study of decision tree ID3 and C4. 5. International Journal of Advanced Computer Science and Applications, 4(2), 13-19. (DOI: 10.14569/SpecialIssue.2014.040203)
    Jain, V. and Phophalia, A. (2021). M-ary Random Forest-A new multidimensional partitioning approach to Random Forest. Multimedia Tools and Applications, 80(28), 35217-35238. (DOI: 10.1007/s11042-020-10047-9)
    Jin, C., Li, F., Ma, S. and Wang, Y. (2022). Sampling scheme-based classification rule mining method using decision tree in big data environment. Knowledge-Based Systems, 244, 108522. (DOI: 10.1016/j.knosys.2022.108522)
    Kankanhalli, A., Hahn, J., Tan, S. and Gao, G. (2016). Big data and analytics in healthcare: Introduction to the special section. Information Systems Frontiers, 18(2), 233-235. (DOI: 10.1007/s10796-016-9641-2)
    Khamar, M. and Eftekhari, M. (2018). Multi-manifold based rotation forest for classification. Applied Soft Computing, 68, 626-635. (DOI: 10.1016/j.asoc.2018.04.026)
    Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., ... and Vittal, V. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE transactions on Power Systems, 19(3), 1387-1401. (DOI:10.1109/TPWRS.2004.825981)
    Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
    Li, B., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees (CART). Biometrics, 40(3), 358-361.
    Li, H. B., Wang, W., Ding, H. W. and Dong, J. (2010). Trees weighting random forest method for classifying high-dimensional noisy data. In 2010 IEEE 7th international conference on e-business engineering (pp. 160-163). (DOI:10.1109/ICEBE.2010.99)
    Lu, H., Meng, Y., Yan, K. and Gao, Z. (2019). Kernel principal component analysis combining rotation forest method for linearly inseparable data. Cognitive Systems Research, 53, 111-122. (DOI: 10.1016/j.cogsys.2018.01.006)
    Moldovan, D. and Salomie, I. (2019). Detection of sources of instability in smart grids using machine learning techniques. In 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 175-182). (DOI:10.1109/ICCP48234.2019.8959649)
    O'Leary, D. E. (2013). Artificial intelligence and big data. IEEE intelligent systems, 28(2), 96-99. (DOI:10.1109/MIS.2013.39)
    Pardo, C., Diez-Pastor, J. F., García-Osorio, C. and Rodríguez, J. J. (2013). Rotation Forests for regression. Applied Mathematics and Computation, 219(19), 9914-9924. (DOI: 10.1016/j.amc.2013.03.139)
    Parhizkar, T., Rafieipour, E. and Parhizkar, A. (2021). Evaluation and improvement of energy consumption prediction models using principal component analysis based feature reduction. Journal of Cleaner Production, 279, 123866. (DOI: 10.1016/j.jclepro.2020.123866)
    Paul, A. and Mukherjee, D. P. (2016). Reinforced random forest. In Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing (pp. 1-8). (DOI:10.1145/3009977.3010003)
    Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin philosophical magazine and journal of science, Series 6, 2(11), 559-572. (DOI: 10.1080/14786440109462720)
    Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106. (DOI:10.1007/BF00116251)
    Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers. (ISBN:978-1-55860-238-0)
    Rahoma, A., Imtiaz, S. and Ahmed, S. (2021). Sparse principal component analysis using bootstrap method. Chemical Engineering Science, 246, 116890. (DOI: 10.1016/j.ces.2021.116890)
    Rasti, B., Sveinsson, J. R., Ulfarsson, M. O. and Sigurdsson, J. (2013, June). Wavelet based sparse principal component analysis for hyperspectral denoising. In 2013 5th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS) (pp. 1-4). (DOI:10.1109/WHISPERS.2013.8080701)
    Reddy, K. V. V., Elamvazuthi, I., Abd Aziz, A., Paramasivam, S., Chua, H. N. and Pranavanand, S. (2021, December). Rotation Forest Ensemble Classifier to Improve the Cardiovascular Disease Risk Prediction Accuracy. In 2021 8th NAFOSTED Conference on Information and Computer Science (NICS) (pp. 404-409). (DOI:10.1109/NICS54270.2021.9701455)
    Rodríguez, J. J., Kuncheva, L. I. and Alonso, C. J. (2006). Rotation forest: A new classifier ensemble method. IEEE transactions on pattern analysis and machine intelligence, 28(10), 1619-1630. (DOI: 10.1109/TPAMI.2006.211)
    Salam, A. and El Hibaoui, A. (2021). Applying Deep Learning Model to Predict Smart Grid Stability. In 2021 9th International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-9). (DOI:10.1109/IRSEC53969.2021.9741136).
    Schmarzo, B. (2013). Big Data: Understanding how data powers big business. John Wiley & Sons. (ISBN: 1118740009,9781118740002)
    Shamisa, A., Majidi, B. and Patra, J. C. (2018). Sliding-window-based real-time model order reduction for stability prediction in smart grid. IEEE Transactions on Power Systems, 34(1), 326-337. (DOI:10.1109/TPWRS.2018.2868850)
    Shuaib, M., Abdulhamid, S. M., Adebayo, O. S., Ismaila, I., Osho, O., Idris, I., Alhassan, J. K. and Rana, N. (2019). Whale optimization algorithm-based email spam feature selection method using rotation forest for classification. SN Applied Sciences, 1, 390. (DOI: 10.1007/s42452-019-0394-7)
    Subasi, A. and Yaman, E. (2019). EMG signal classification using discrete wavelet transform and rotation forest. In International Conference on Medical and Biological Engineering (pp. 29-35). Springer, Cham. (DOI:10.1007/978-3-030-17971-7_5)
    U.S. Department of Energy, The Smart Grid: An Introduction (Washington, DC: U.S. Department of Energy, 2008).
    Van Deun, K., Thorrez, L., Coccia, M., Hasdemir, D., Westerhuis, J. A., Smilde, A. K. and Van Mechelen, I. (2019). Weighted sparse principal component analysis. Chemometrics and Intelligent Laboratory Systems, 195, 103875. (DOI: 10.1016/j.chemolab.2019.103875)
    Xiao, C. (2010). Two-dimensional sparse principal component analysis for face recognition. In 2010 2nd International Conference on Future Computer and Communication (Vol. 2, pp. V2-561). (DOI:10.1109/ICFCC.2010.5497525)
    Yan, X., Peng, X., Qin, Y., Xu, Z., Xu, B., Li, C., ... and Zhang, Q. (2021). Classification of plastics using laser-induced breakdown spectroscopy combined with principal component analysis and K nearest neighbor algorithm. Results in Optics, 4, 100093. (DOI: 10.1016/j.rio.2021.100093)
    Yokoyama, A. and Yamaguchi, N. (2020). Comparison between ANN and random forest for leakage current alarm prediction. Energy Reports, 6, 150-157. (DOI: 10.1016/j.egyr.2020.11.271)
    Younes, K., Abdallah, M. and Hanna, E. G. (2022). The application of principal components analysis for the comparison of chemical and physical properties among activated carbon models. Materials Letters, 325, 132864. (DOI: 10.1016/j.matlet.2022.132864)
    Zeng, S. and Yang, W. (2020). Selection Of Variables And Indicators In Financial Distress Prediction Model-Svm Method Based On Sparse Principal Component Analysis. In 2020 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR) (pp. 26-30). (DOI: 10.1109/ICWAPR51924.2020.9494625)
    Zhang, C. X. and Zhang, J. S. (2008). RotBoost: A technique for combining Rotation Forest and AdaBoost. Pattern Recognition Letters, 29(10), 1524-1536. (DOI: 10.1016/j.patrec.2008.03.006)
    Zou, H., Hastie, T. and Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265-286. (DOI: 10.1198/106186006X113430)

    無法下載圖示 全文公開日期 2026/07/06 (校內網路)
    全文公開日期 2026/07/06 (校外網路)
    全文公開日期 2026/07/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE