簡易檢索 / 詳目顯示

研究生: 巫采蓉
Tsai-jung Wu
論文名稱: 改質氧化鐵載氧體於化學迴圈程序之還原氧化動力評估
Kinetic Study of Redox Behavior of Modified Iron Oxide for Chemical Looping Process
指導教授: 郭俞麟
Yu-lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 110
中文關鍵詞: 載氧體改質氧化鐵化學迴圈水分解產氫
外文關鍵詞: Oxygen Carriers, Modified Iron Oxide, Chemical looping, Water-splitting for Hydorgen production
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫氣的來源相當多元化且使用後主要產物為水,具有低污染的優點。而現今之製氫技術朝向水分解產氫之脈絡發展,因此使用化學迴圈程序分解水產氫技術值得研究探討。化學迴圈產氫程序利用載氧體在三個反應器之間與燃料、水氣、與空氣間交互氧化還原反應並連續迴圈循環,分別於燃料反應器獲得高純度二氧化碳、水蒸氣反應器進行水分解產氫與空氣反應器將載氧體反應回至原始狀態,此被視為一項具有不需CO2分離程序、低環境衝擊、高能源效率之能源技術。此技術提供氧化所需氧原子來源為金屬氧化物載氧體,而三氧化二鐵(Fe2O3)具有高度機械強度、高載氧率、低成本等,因此被廣泛應用於此製程技術,但其多種的氧化相態,與燃料氣體進行還原反應時將有顯著的遲緩現象,且經多數迴圈後材料會有嚴重的顆粒團聚,限制了產氫的反應效能。
    本研究將以不同金屬離子摻雜Fe2O3以SEM、XRD和ICP分析觀察其表面、組成結構之變化以及不同金屬離子摻雜之含量,再於熱重分析儀模擬其還原活性,以期了解還原反應動力。實驗結果顯示添加微量金屬離子可改善其氧化鐵在不同氣氛下於600˚C-900˚C間之還原性能,反應速率將會隨著溫度的提升而增加,且在高溫下可判斷出屬於三個階段之還原反應。此外載氧體的還原反應可視為一個相態轉換過程,改質過之氧化鐵與純氧化鐵在不同氣氛下所得到之反應型態屬於一階反應。
    由於三氧化二鋁具有耐高溫、價格低廉及產量豐富之特性,因此本研究使用三氧化二鋁做為惰性擔體應用於化學迴圈程序中,並使用固定床反應器搭配氫氣感測器分析在不同改質之氧化鐵搭配三氧化二鋁複合載氧體系統之水分解產氫效能與氧化反應動力,其材料分析方面以XRD、SEM以及孔隙率觀察其經化學迴圈程序反應前後之表面結構組成與剖面結構變化,進而評估不同金屬離子摻雜氧化鐵載氧體於化學迴圈水分解產氫技術之可行性。結果顯示,摻雜不同金屬離子可有效增強其氧化反應時與水蒸氣之反應進而提升其反應速率,同時提高氧化鐵之氫氣產生量。其中以FA、Ca-FA和Co-FA載氧體之氧化轉化率曲線獲得之斜率介於1-2之間,推測其氧化階段反應屬於一階反應(First-order reaction);而Mg-FA和Cu-FA其氧化轉化率之斜率接近於1.0,可視為相界控制 (Phase-boundary controlled)機制。


    Hydorgen is the most abundant chemical element in the universe. On the ground surface, hydorgen primarily exists in compounds, in particular, mostly in the form of water molecule. As a quiet and clean energy, hydorgen energy plays an important role in future energy development. Hydorgen production by water splitting with photocatalyst is still under development with the efforts on improving it lower efficiency. At present, renewable energies, such as hydraulic power, wind power, solar power and solar thermal power, are consumed to produce Hydorgen by electrolysis of water, which result in high cost issue. A new process for producing hydorgen from fuel gases (syngas or natural gas), based on chemical looping (CL) are declared elsewhere. The core of the process is composed of three-reactors system, in which iron oxide are transferred to: (i) oxidize fuel gases, (ii) water-splitting for producing hydorgen, (iii) react with air stream to the original. Iron Oxide (Fe2O3) is a potential substitute for other materials of hydorgen production. However, the performance of Fe2O3 oxygen carriers was dramatically reduced due to the agglomeration of particles. Thus, the ability of water-splitting for H2 production decreased at higher temperatures.
    This study is to investigate the effects of various metal additives in the modified iron oxide on the redox performance of CL process by TGA system. Integrating with the materials characterizations by SEM, XRD and ICP analyses, the mechanism of reduction behavior will be addressed accordingly. The results showed that the doped metals promoted the reduction of Fe2O3 at 600-900˚C under different fuel gases. The pure and modified Fe2O3 samples prepared at higher temperature showed three reduction steps due to the change of oxidation states of iron. Also, it is noticed that the reduction model of the modified Fe2O3 can be assumed as the first order reaction.
    Aluminium oxide (Al2O3) is a stable and inexpensive material which can be used in chemical looping hydrogen generation as an inner support. The modified iron oxide with Al2O3 composite system under H2/N2 as fuel gas in a fixed bed reactor with the hydorgen detector was investigated by its kinetics study of oxidation, the conversion efficiency and the ability of water-splitting for H2 production. The characterisitics of the prepared and reacted oxygen carriers were studied using XRD, SEM, and porosity analysis. Then, the feasibility of Metal-modified Fe2O3/Al2O3 composite system in CL process for hydorgen production would be expected to transfer for the real commercialization. The experimental results indicate that the doped metals in iron oxide effectiveky enhanced the oxidation with water of the iron oxide and increased the reaction rate. It was also concluded that the oxidation reaction of FA, Ca-FA and Co-FA were controlled by first-order reaction. The oxidation process of Mg-FA and Cu-FA could be interpreted as a phase-boundary-controlled reaction.

    目錄 致謝 I 摘要 II Abstract IV 目錄VI 第一章 緒論 1 1.1 前言 1 1.2 各類產氫技術簡介 2 1.3 研究動機 6 第二章 文獻回顧 7 2.1 化學迴圈產氫技術 7 2-2載氧體之選擇 11 2-3鎳基(Ni)載氧體 14 2-4 銅基(Cu)載氧體 17 2-5 鐵基(Fe)載氧體 20 2-6 微量摻雜改質鐵系(Fe)載氧體 29 第三章 實驗設備與程序 40 3.1 實驗設備 40 3.1.1 熱重分析儀(Thermogravimetric analyzer, TGA) 40 3.1.2 固定床反應器系統(Fixed bed reactor system, FxBR) 42 3.2 材料性質分析儀器 43 3.2.1 X光繞射分析儀(X-ray diffratometer) 43 3.2.2 比表面積量測儀(Brunauer-Emmett-Teller, BET) 43 3.2.3紫外光可見光擴散反射光譜儀 (UV-visible Diffuse Reflectance Spectra) 44 3.2.4 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy, FE-SEM)45 3.2.5感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-AES) 45 3.2.6阿基米德法(Archimedes method) 46 3.2.7 粉碎強度測試儀(TA.XTplus) 47 3.3 實驗藥品 48 3.4 實驗步驟 49 第四章 結果與討論 51 4.1 以濕式含浸法合成二價金屬離子摻雜氧化鐵之載氧體 51 4.1.1 起始及初步材料相態變化分析 51 4.1.2 載氧體之微觀結構與定量分析 52 4.2 載氧體於不同氣氛下之化學迴圈性能分析 58 4.2.1 不同氣氛對於載氧體之還原溫度影響 58 4.2.2 載氧體在不同溫度與不同氣氛下之還原程度影響 59 4.3 載氧體之還原動力機制探討 71 4.3.1 不同氣氛下之還原速率變化比較 71 4.3.2 不同氣氛下之還原速率變化比較 74 4.4 不同金屬離子摻雜氧化鐵之化學迴圈產氫程序之性能評估 80 4.5 氧化動力機制探討 90 4.6 經濟效益評估 94 第五章 結論 97 5.1 不同微量金屬氧化物摻雜氧化鐵載氧體 97 5.2 不同氣氛下之還原反應測試與還原機制 97 5.3 不同金屬氧化物摻雜氧化鐵搭配惰性擔體之化學迴圈產氫程序之性能評估 98 5.4 後續工作 99 第六章 參考文獻 100 圖索引 圖1-1 燃料燃燒CO2排放量與人均排放趨勢圖 5 圖1-2 美國能源部(DOE/NETL)之二氧化碳捕捉技術發展評估 5 圖2-1 化學迴圈燃燒程序示意圖 10 圖2-2 化學迴圈產氫技術示意圖 10 圖2-3不同金屬氧化物之含氧量比 13 圖2-4不同氣氛下之進行多圈數化學迴圈程序之反應活性比較 16 圖2-5 Ni-NiO系統在SGR程序還原過程與CO2/CO (─)和H2O/H2 (- - -)反應之平衡相圖 16 圖2-6 純氧化鐵以甲烷為燃料之化學迴圈程序之反應性 19 圖2-7 以不同方法製備銅系載氧體之SEM表面型態之分析 19 圖2-8 氧化鐵還原前後之XRD分析圖:(a)還原前,(b)部分還原,DR≈11% 和(c)完全還原。(○) Fe2O3;(□) Fe3O4;(∆)Fe 24 圖2-9 三氧化二鐵之還原路徑圖 24 圖2-10 以氫氣還原氧化鐵之阿瑞尼斯圖 24 圖2-11 氧化鐵之Gibbs自由能(ΔG)比較 25 圖2-12 Bauer-Glaessner 相圖 25 圖2-13 α- Fe2O3產氫分析:(A) TG圖,(B) DTG圖和(C) X-ray圖譜。↓ 為初始還原溫度(Ti);(C), (i)為α- Fe2O3(A-500)還原至372˚C時;(C), (ii)為α- Fe2O3(A-1200)還原至474˚C時。(●) α- Fe2O3;(○)Fe3O4;(×) Fe 26 圖2-14 不同還原時間下之氧化鐵的微觀結構變化 27 圖2-15 Fe-FeO-Fe3O4-Fe2O3系統在SGR程序與CO2/CO (─)和H2O/H2 (- - -)之平衡相圖 28 圖2-16 Fe2O3-Al2O3經不同操作溫度下還原之XRD分析結果。其中A為α-Al2O3之結構、C為剛玉(corundum)之結構、H為赤鐵礦(hematite)之結構、A2F為FeAl2O4之結構、M為磁鐵礦(magnetite)之結構 28 圖2-17 各種金屬氧化物穩定相態存在之溫度區間圖 34 圖2-18 添加微量的CaO和(或)MgO之在不同還原溫度下之還原特性 34 圖2-19 添加不同金屬離子於α- Fe2O3其製備溫度與初始還原溫度之關係圖 35 圖2-20 純鐵氧化物與摻雜物之平均還原速率比較圖 36 圖2-21 為改質之純Fe2O3和改質過後的純Fe2O3反映前後之微觀結構。(a) 未反應之純Fe2O3;(b) 經三圈反應之純Fe2O3;(c) 未反應之摻雜Zr的Fe2O3;(d) 經三圈反應之摻雜Zr的Fe2O3 36 圖2-22 不同Mo摻雜濃度的Fe2O3執行多圈數對於氫氣的形成速率影響 37 圖2-23 80 wt%Fe2O3-Ce0.5Zr0.5O2與摻雜過之Fe2O3-Ce0.5Zr0.5O2經100迴圈之氫氣產率。(a) 未摻雜;(b)2 wt% Mo;(c) 5 wt% Mg 和(d) 5 wt% Cu 37 圖2-24 不同含量的K2CO3添加至鐵礦中之不同氣體濃度比較圖:(a) 0% K2CO3;(b) 6% K2CO3;(c) 10% K2CO3以及(d) 20% K2CO3 38 圖2-25 Fe2O3-Mo-Al和Fe2O3-Mo-Cr反應前後之XRD分析圖譜。▽:MoO2;○:MoO3 38 圖2-26 不同雙金屬添加之迴圈前後對於氫氣形成速率和溫度的比較 39 圖3-1 熱重分析儀之示意圖 41 圖3-2 固定床反應器系統裝置之示意圖 42 圖3-3 阿基米德法之實驗示意圖 47 圖3-4 研究方法流程 49 圖3-5 二價金屬離子摻雜氧化鐵之實驗流程圖 50 圖3-6 載氧體搭配擔體之實驗流程圖 50 圖4-1 不同微量金屬離子摻雜氧化鐵經500˚C燒結後之粉體X射線繞射圖譜 54 圖4-2 不同微量金屬離子摻雜氧化鐵載氧體之UV-vis圖譜 53 圖4-3 不同微量金屬離子摻雜氧化鐵載氧體之SEM表面形貌圖 55 圖4-4 不同微量金屬離子(Mg2+、Ca2+、Co2+)及鐵離子之EDX Mapping分佈圖 56 圖4-5不同微量金屬離子(Ni2+、Cu2+、Zn2+)及鐵離子之EDX Mapping分佈圖 57 圖4-6 不同金屬離子摻雜之載氧體於氫氣氣氛下之等速升溫熱重變化曲線 60 圖4-7 不同金屬離子摻雜之載氧體於合成氣氣氛下之等速升溫熱重變化曲線 60 圖4-8 不同金屬離子摻雜之載氧體於氫氣氣氛下之等速升溫熱重變化曲線與微分之熱重量曲線(DTG)圖 62 圖4-9 不同金屬離子摻雜之載氧體於合成氣氣氛下之等速升溫熱重變化曲線與微分之熱重量曲線(DTG)圖63 圖4-10 FO在氫氣氣氛下不同溫度之載氧體還原程度 64 圖4-11 Mg-FO在氫氣氣氛下不同溫度之載氧體還原程度 64 圖4-12 Ca-FO在氫氣氣氛下不同溫度之載氧體還原程度 65 圖4-13 Co-FO在氫氣氣氛下不同溫度之載氧體還原程度 65 圖4-14 Ni-FO在氫氣氣氛下不同溫度之載氧體還原程度 66 圖4-15 Cu-FO在氫氣氣氛下不同溫度之載氧體還原程度 66 圖4-16 Zn-FO在氫氣氣氛下不同溫度之載氧體還原程度 67 圖4-17 FO在合成氣氣氛下不同溫度之載氧體還原程度 67 圖4-18 Mg-FO在合成氣氣氛下不同溫度之載氧體還原程度 68 圖4-19 Ca-FO在合成氣氣氛下不同溫度之載氧體還原程度 68 圖4-20 Co-FO在合成氣氣氛下不同溫度之載氧體還原程度 69 圖4-21 Ni-FO在合成氣氣氛下不同溫度之載氧體還原程度 69 圖4-22 Cu-FO在合成氣氣氛下不同溫度之載氧體還原程度 70 圖4-23 Zn-FO在合成氣氣氛下不同溫度之載氧體還原程度 70 圖4-24載氧體於氫氣氣氛下還原不同溫度之反應速率變化圖。(a) FO、(b) Mg-FO、(c) Ca-FO、(d) Co-FO、(e) Ni-FO、(f) Cu-FO、(g) Zn-FO 75 圖4-25載氧體於合成氣氣氛下還原不同溫度之反應速率變化圖。(a) FO、(b) Mg-FO、(c) Ca-FO、(d) Co-FO、(e) Ni-FO、(f) Cu-FO、(g) Zn-FO 76 圖4-26 載氧體於氫氣氣氛下,不同溫度之lnln(1/(1-X))與ln(t)關係圖 78 圖4-27 載氧體於合成氣氣氛下,不同溫度之lnln(1/(1-X))與ln(t)關係圖 79 圖4-28 FA載氧體在不同水蒸氣流率下之產氫量與轉化率比較圖 83 圖4-29 FA載氧體在不同反應溫度下之產氫量與轉化率比較圖 83 圖4-30 Mg-FA載氧體在不同反應溫度下之產氫量與轉化率比較圖 84 圖4-31 Ca-FA載氧體在不同反應溫度下之產氫量與轉化率比較圖 84 圖4-32 Co-FA載氧體在不同反應溫度下之產氫量與轉化率比較圖 85 圖4-33 Cu-FA載氧體在不同反應溫度下之產氫量與轉化率比較圖 85 圖4-34 改質過之載氧體在不同反應溫度下之產氫量總比較圖 86 圖4-35 改質過之氧化鐵搭配Al2O3惰性擔體之X射線繞射圖譜 86 圖4-36 改質過之氧化鐵搭配Al2O3惰性擔體執行單圈化學迴圈產氫程序之X射線繞射圖譜 87 圖4-37 改質過之氧化鐵搭配Al2O3惰性擔體執行多圈化學迴圈產氫程序之X射線繞射圖譜 87 圖4-38 改質過之氧化鐵搭配Al2O3載氧體之反應前後SEM截面形貌圖。(a)反應前之FA,(a-1)反應後之FA;(b)反應前之Mg-FA,(b-1)反應後之Mg-FA;(c)反應前之Ca-FA,(c-1)反應後之Ca-FA;(d)反應前之Co-FA,(d-1)反應後之Co-FA;(e)反應前之Cu-FA,(e-1)反應後之Cu-FA 89 表索引 表1-1 各種產氫技術之比較 5 表2-1 不同金屬氧化物系統反應後之氣體產量 13 表2-2不同金屬離子與對於Α- FE2O3的初始還原溫度、比表面積、晶粒尺寸影響 35 表4-1 載氧體之物理性質比較 54 表4-2 不同氣氛下之還原溫度變化 61 表4-3 氫氣氣氛下還原三階段之活化能值 77 表4-4 合成氣氣氛下還原三階段之活化能值 77 表4-5 載氧體反應前後之物理特性 88 表4-6 常見固-氣反應機制 91 表4-7 產氫反應之氧化動力參數 92 表4-8 產氫反應之反應速率和活化能 93 表4-9 載氧體製備成本估算表 95 表4-10 營運成本估算表 95 表4-11 各個載氧體材料成本效益評估 96

    1.http://topics.nytimes.com/topics/news/science/topics/globalwarming/index.html.
    2.吳龍暉,「用之不竭的乾淨氫氣能源」,太陽能學刊,第4卷,第1期,(1999)。
    3.曲新生、陳發林、呂錫民,「產氫與儲氫技術」,五南圖書出版股份有限公司, (2007)。
    4.A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature, Vol. 238, pp. 37-38, (1972).
    5.E. Chao Raul, “Thermochemical Hydorgen Production. An Assessment of Nonideal Cycles” Industrial and Engineering Chemistry Process Design and Development, Vol. 14, pp. 276-279, (1975).
    6.L. Stuart, “Thermochemical Solar Hydorgen Generation” Chemical Communications, pp. 4635-4646, (2005).
    7.P. Christopher, W. Weimer Alan, “Likely Near-term Solar-thermal Water Splitting Technologies” International Journal of Hydorgen Energy, Vol. 29, pp. 1587-1599, (2004).
    8.K. Akihiko, “Photocatalyst Materials for Water Splitting” Catalysis Surveys from Asia, Vol. 7, pp. 31-38, (2003) .
    9.經濟部能源局,「我國燃料燃燒二氧化碳排放統計與分析」(2012)。
    10.National energy technology laboratory “DOE/NETL Carbon Dioxide Capture and Storage RDandD Roadmap” pp. 31, (2010).
    11.H.J. Richter, K.F Knoche, “Reversibility of Combustion Processes, in Efficiency and Costing - Second Law Analysis of Processes” ACS Symposium Series, pp. 71-85, (1983).
    12.E. Jerndal, H. Leion, L. Axelsson, T. Ekvall, M. Hedberg, K. Johansson, M. Ka ̈lle ́n, R. Svensson, T. Mattisson, A. Lyngfelt, “Using Low-Coat Iron-Based Materials as Oxygen Carriers for Chemical Looping Combustion” Oil and Gas Science and Technology-Revue d’IFP Energies nouvelles, Vol. 66, pp. 235-248, (2011).
    13.P. Gupta, L.G. Velazquez-Vargas, L.S. Fan, “Syngas Redox (SGR) Process to Produce Hydorgen from Coal Derived Syngas” Energy and Fuels, Vol. 21, pp. 2900-2908, (2007).
    14.S.Y. Chen, Q. Shi, Z.P. Xue, X.Y. Sun, W.G. Xiang, “Experimental Investigation of Chemical-Looping Hydorgen Generation using Al2O3 or TiO2-supported Iron Oxides in a Batch Fluidized Bed” International Journal of Hydorgen Energy, Vol. 36, pp. 8915-8926, (2011).
    15.T. Mattisson1, Q. Zafar, M. Johansson, A. Lyngfelt, “Chemical-Looping Combustion as a New CO2 Management Technology” First Regional Symposium on Carbon Management, (2006).
    16.T. Mattisson, A. Lyngfelt, “A. Capture of CO2 using Chemical-Looping Combustion” First Biennial Meeting of the Scandinavian-Nordic Section of the Combustion Institute, (2001)
    17.E. Jerndal, T. Mattisson, A. Lyngfelt, “A. Thermal Analysis of Chemical-Looping Combustion” Chemical Engineering Research and Design, Vol. 84, pp. 795-806.
    18.J.S. Dennis, “Chemical Looping Combustion: One Answer to Sequestering Carbon Dioxide” Proceedings of the European Combustion Meeting, (2009).
    19.H. Fang, L. Haibin, Z. Zengli, “Advancements in Development of Chemical-Looping Combustion: A Review” International Journal of Chemical Engineering, Vol. 2009, pp. 1-16, (2009).
    20.P. Gayan, L.F. de Diego, F. Garćıa-Labiano, J. Adanez, A. Abad, C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-based Oxygen Carriers for Chemical-Looping Combustion” Fuel, Vol. 87, pp. 2641-2650, (2008).
    21.Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, “Use of Coal as Fuel for Chemical-Looping Combustion with Ni-Based Oxygen Carrier” Industrial and Engineering Chemistry Research, Vol. 47, pp. 9279-9287, (2008).
    22.M. Ishida, H. Jin, “A Novel Chemical-Looping Combustor without NOx Formation” Industrial and Engineering Chemistry Research, Vol. 35, pp. 2469-2472, (1996).
    23.H. Jin, M. Ishida, “Reactivity Study on Nnatural-gas-fueled Chemical-Looping Combustion by a Fixed-bed Reactor” Industrial and Engineering Chemistry Research, Vol. 41, pp. 4004-4007, (2002).
    24.M. Ishida, H. Jin, T. Okamoto, “Kinetic Behavior of Solid Particle in Chemical-Looping Combustion: suppressing carbon deposition in reduction” Energy and Fuels, Vol. 12, pp. 223-229, (1998).
    25.M. Ishida, H. Jin, T. Okamoto, “A fundamental study of a new kind of medium material for Chemical-Looping Combustion” Energy and Fuels, Vol. 10, pp. 958-963, (1996).
    26.H. Jin, T. Okamoto, M. Ishida, “Development of a Novel Chemical-Looping Combustion: Synthesis of a Solid Looping Material of NiO/NiAl2O4” Industrial and Engineering Chemistry Research, Vol. 38, pp. 126-132, (1999).
    27.P. Cho, T. Mattisson, A. Lyngfelt, “Defluidization Conditions for a Fluidized Bed of Iron Oxide-, Nickel Oxide-, and Manganese Oxide-containing Oxygen Carriers for Chemical-Looping Combustion” Industrial and Engineering Chemistry Research, Vol. 45, pp. 968-977, ( 2006).
    28.P. Cho, T. Mattisson, A. Lyngfelt, “Carbon formation on nickel and Iron Oxide-containing Oxygen Carriers for Chemical-Looping Combustion” Industrial and Engineering Chemistry Research, Vol. 44, pp. 668-676, (2005).
    29.M. Johansson, T. Mattisson, A. Lyngfelt, “Using of NiO/NiAl2O4 particles in a 10kW Chemical-Looping Combustor” Industrial and Engineering Chemistry Research, Vol. 45, pp. 5911-5919, (2006).
    30.R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini, “Ni Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions” Journal of Molecular Catalysis A, Vol. 204-205, pp. 637-646, (2003).
    31.Q. Zafar, T. Mattisson, B. Gevert, “Redox Investigation of Some Oxides of Transition-state Metals Ni, Cu, Fe, and Supported on SiO2 and MgAl2O4” Energy and Fuels, Vol. 20, pp. 34-44, (2006).
    32.E. Johansson, T. Mattisson, A. Lyngfelt, H. Thunman, “A 300W Laboratory Reactor System for Chemical-Looping Combustion with Particle Circulation” Fuel, Vol. 85, p. 1428-1438, (2006).
    33.F. Garćıa-Labiano, L.F. de Diego, J. Adanez, A. Abad, P. Gayan, “Reduction and Oxidation Kinetics of a Copper-based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion” Industrial and Engineering Chemistry Research, Vol. 43, pp. 8168-8177, (2004).
    34.A. Abad, J. Adanez, F. Garćıa-Labiano, L.F. de Diego, P. Gayan, J. Celaya, “Mapping of the Range of Operational Conditions for Cu-, Fe-, and Ni-based Oxygen Carriers in Chemical-Looping Combustion” Chemical Engineering Science, Vol. 62, pp. 533-549, (2007).
    35.L.F. de Diego, F. Garćıa-Labiano, P. Gayan, J. Celaya, J.M. Palacios, J. Adanez, “Operation of a 10kWth Chemical-Looping Combustor during 200h with a CuO-Al2O3 Oxygen Carrier” Fuel, Vol. 86, pp. 1036-1045, (2007).
    36.L.F. de Diego, F. Garćıa-Labiano, J. Adanez, et al., “Development of Cu-based Oxygen Carriers for Chemical-Looping Combustion” Fuel, Vol. 83, pp. 1749-1757, (2004).
    37.T. Mattisson, A. Jardnas, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-application for Chemical-Looping Combustion” Energy and Fuels, Vol. 17, pp. 643-651, (2003).
    38.L.F. de Diego, P. Gayan, F. Garćıa-Labiano, J. Celaya, A. Abad, J. Adanez, “Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion: Avoiding Fluidized Bed Agglomeration” Energy and Fuels, Vol. 19, pp. 1850-1856, (2005).
    39.S.Y. Chuang, J.S. Dennis, A.N. Hayhurst, S.A. Scott,“Development and performance of Cu-based Oxygen Carriers for Chemical-Looping Combustion” Combustion and Flame, Vol. 154, pp. 109-121, (2008).
    40.P. Cho, T. Mattisson, A. Lyngfelt, “Comparison of Iron-, Nickel-, Copper-, and Manganese-based Oxygen Carriers for Chemical-Looping Combustion” Fuel, Vol. 83, pp. 1225-1245, (2004).
    41.B.M. Corbella, L.F. de Diego, F. Garćıa-Labiano, J. Adanez, J.M. Palacios, “Characterization and Performance in a Multicycle Test in a Fixed-bed Reactor of Silica-supported Copper Oxide as Oxygen Carrier for Chemical-Looping Combustion of Methane” Energy and Fuels, Vol. 20, pp. 148-154, (2006).
    42.T. Mattisson, H. Leion, and A. Lyngfelt, “Chemical-Looping with Oxygen Uncoupling using CuO/ZrO2 with Petroleum Coke,” Fuel, Vol. 88, pp. 683-690, (2009).
    43.B.M. Corbella, L.F. de Diego, F. Garćıa-Labiano, J. Adanez, J.M. Palacios, “The Performance in a Fixed Bed Reactor of Copper-based Oxides on Titania as Oxygen Carriers for Chemical Looping Combustion of Methane” Energy and Fuels, Vol. 19, p. 433-441, (2005).
    44.H. Tian, K. Chaudhari, T. Simonyi, J. Poston, T. Liu, T. Sanders, G. Veser, R. Siriwardane, “Chemical-Looping Combustion of Coal-derived Synthesis Gas over Copper Oxide Oxygen Carriers” Energy and Fuels, Vol. 22, pp. 3744-3755, (2008).
    45.J.A. Pena, E. Lorente, E. Romero, J. Herguido, “Kinetic Study of the Redox Process for Storing Hydorgen Reduction Stage” Catalysis Today, Vol. 116, pp. 439-444, (2006).
    46.A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I: Low Temperature Reduction of Hematite” Thermochimica Acta, Vol. 447, pp. 89-100, (2006).
    47.A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part II. Low Temperature Reduction of Magnetite” Thermochimica Acta, Vol. 456, pp. 75-88, (2007).
    48.E. Romero, R. Soto, P. Duran, J. Herguido, J.A. Pena, “Molybdenum Addition to Modified Iron Oxides for Improving Hydorgen Separation in Fixed Bed by Redox Processes” International Journal of Hydorgen Energy, Vol. 37, pp. 6978-6984, (2012).
    49.S. Chen, W.G. Xiang, Z.P. Xue, X.Y Sun, “Experimental Investigation of Chemical Looping Hydorgen Generation using Iron Oxides in a Batch Fluidized Bed” Proceedings of the Combustion Institute, Vol. 33, pp. 2691-2699, (2011).
    50.M. Shimokawabe, R. Furuichi, T. Ishii, “Influence of the Preparation History of α-Fe2O3 on its Reactivity for Hydorgen Reduction” Thermachimica Acta, Vol. 28, pp. 287-305, (1979).
    51.D. Wagner, O. Devisme, F. Patisson, D. Ablitzer, “A Laboratory Study of the Reduction of Iron Oxides by Hydorgen” Sohn International Symposium, Proceedings, Vol. 2, pp. 111-120, (2006).
    52.M. Et-Tabirou, B. Duprie, C. Gleitzer, “Hematite Single Crystal Reduction into Magnetite with CO-CO2” Metallurgical Transactions B, Vol. 19B, pp. 311-317, (1988).
    53.C.D. Bohn, J.P. Cleeton, C.R. Muller, J.F. Davidson and A. N. Hayhurst, S.A. Scott, J.S. Dennis, “The Kinetics of the Reduction of Iron Oxide by Carbon Monoxide Mixed with Carbon Dioxide” AIChE Journal, Vol. 56, pp. 1016-1029, (2009).
    54.J.P.E. Cleeton, C.D. Bohn, C.R. Muller, J.S. Dennis, S.A. Scott, “Clean Hydorgen Production and Electricity from Coal via Chemical Looping:Identifying a Suitable Operating Regime” International Journal of Hydorgen Energy, Vol. 34, pp. 1-12, (2009).
    55.K.S. Go, S.R. Son, S.D. Kim, “Reaction Kinetics of Reduction and Oxidation of Metal Oxides for Hydorgen Production” International Journal of Hydorgen Energy, 33, pp. 5986-5995, (2008).
    56.K.S. Go, S.R. Son, S.D. Kim, K.S. Kang, C.S. Park, “Hydorgen Production from Two-step Steam Methane Reforming in a Fluidized Bed Reactor” International Journal of Hydorgen Energy, Vol. 34, pp. 1301-1309, (2009).
    57.V. Galvita, T. Hempel, H. Lorenz, L.K. Rihko-Struckmann, K. Sundmacher, “Deactivation of Modified Iron Oxide Materials in the Cyclic Water Gas Shift Process for CO-Free Hydorgen Production” Industrial and Engineering Chemistry Research, Vol. 47, pp. 303-310, (2008).
    58.M. Ishida, K. Takeshita, K. Suzuki, T. Ohba, “Application of Fe2O3-Al2O3 Composite Particles as Solid Looping Material of the Chemical-Loop Combustor” Energy and Fuels, Vol. 19, pp. 2514-2518, (2005).
    59.A.M. Kierzkowska, C.D. Bohn, S.A. Scott, J.P. Cleeton, J.S. Dennis, C.R. Muller, “Development of Iron Oxide Carriers for Chemical Looping Combustion Using Sol-Gel” Industrial and Engineering Chemistry Research, Vol 49, pp. 5383–5391, (2010).
    60.A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson, “The Use of Iron Oxide as Oxygen Carrier in a Chemical-Looping Reactor” Fuel, Vol. 86, pp. 1021-1035, (2007).
    61.P.H. Bolt, F.H.P.M. Habraken, J.W. Geus, “Formation of Nickel, Cobalt, Copper, and Iron Aluminates from α- and γ-Alumina-Supported Oxides: A Comparative Study” Journal of Solid State Chemistry, Vol. 135, pp. 59-69, (1998).
    62.M. Johansson, T. Mattisson, and A. Lyngfelt, “Investigation of Fe2O3 with MgAl2O4 for Chemical-Looping Combustion” Industrial and Engineering Chemistry Research, Vol. 43, pp. 6978-6987, (2004).
    63.H. Leion, T. Mattisson, and A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion” Fuel, Vol. 86, pp. 1947-1958, (2007).
    64.B.M. Corbella, J.M. Palacios, “Titania-supported Iron Oxide as Oxygen Carrier for Chemical-Looping Combustion of Methane” Fuel, Vol. 86, pp. 113-122, (2007).
    65.劉祐誠,「以合成器為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
    66.Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydorgen and Power Production with CO2 Capture using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a Support,” Industrial and Engineering Chemistry Research, Vol. 44, pp. 3485-3496, (2005).
    67.P.R. Westmoreland, D.P. Harrison, “Evaluation of Candidate Solids for High-Temperature Desulfurization of Low-Btu Gases” Environmental Science Technology, Vol. 10, pp. 659-661, (1976).
    68.K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, “Chemical Storage of Hydorgen by Modified Iron Oxides” Journal of Power Sources, Vol. 122, pp. 111-121, (2003).
    69.W. de Bruijn, A. van Sandwijk, J. Trouw, R.H. Heerema, Miner. Metall. Process, pp. 43-49, Feb. (1989).
    70.R. Chaigneau, R.H. Heerema, “The Influence of Specific Impurities on the Nucleation and Growth of Magnetite during Reduction of Artificially Prepared Hematite” Metallurgical Transactions B, Vol. 22B, pp.503-511, (1991).
    71.A.A. El-Geassy, “Stepwise Reduction of CaO and/or to Magnetite Then Subsequently to MgO Doped-Fe2O3 Compacts Iron at 1173-1473K” ISIJ International, Vol. 37, pp. 844-853, (1997).
    72.U.F. Chinje, J.H.E. Jeffes, “Effects of Chemical Composition of Iron Oxides on Their Rates of Reduction: Part 1 Effect of Trivalent Metal Oxides on Reduction of Hematite to Lower Iron Oxides” Ironmaking and Steelmaking, Vol. 16, pp. 90-98, (1989).
    73.M.H. Khedr, “Isothermal Reduction Kinetics of Fe2O3 Mixed with 1–10% Cr2O3 at 1173-1473K” ISIJ International, Vol. 40, pp. 309-314, (2000).
    74.K. Otsuka, C. Yamada, T. Kaburagi, S. Takenaka, “Hydorgen Storage and Production by Redox of Iron Oxide for Polymer Electrolyte Fuel Cell Vehicles” International Journal of Hydorgen Energy, Vol. 28, pp. 335-342, (2003).
    75.J.C. Ryu, D.H. Lee, K.S. Kang, C.S. Park, J.W. Kim, Y.H. Kim, “Effect of Additives on Redox Behavior of Iron Oxide for Chemical Hydorgen Storage” Journal of Industrial and Engineering Chemistry, Vol. 14, pp. 252-260, (2008).
    76.F. Wen, H. Wang, Z. Tang, “Kinetic Study of the Redox Process of Iron Oxide for Hydorgen Production at Oxidation Step” Thermochimica Acta, Vol. 520, pp. 55-60, (2011).
    77.H.M. Gu, L.H. Shen, J. Xiao, S.W. Zhang, T. Song, D.Q. Chen, “Iron Ore as Oxygen Carrier Improved with Potassium for Chemical Looping Combustion of Anthracite Coal” Combustion and Flame, Vol. 159, pp.2480-2490, (2012).
    78.K. Otsuka, S. Takenaka, “Storage and Supply of Pure Hydorgen Mediated by the Redox of Iron Oxides” Journal of the Japan Petroleum Institute, Vol. 47, pp. 377-386, (2004).
    79.S. Takenaka, T. Kaburagi, C. Yamada, K. Nomura, K. Otsuka, “Storage and Supply of Hydorgen by means of the Redox of the Iron Oxides Modified with Mo and Rh Species” Journal of Catalysis, Vol. 228, pp. 66-74, (2004).
    80.K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi, M. Matsukata, “Hydorgen Production via Steam–Iron Reaction using Iron Oxide Modified with very small amounts of Palladium and Zirconia” Applied Catalysis A:General, Vol. 288, pp.143-148, (2005).
    81.D.H. Lee, K.S. Cha, Y.S. Lee, K.S. Kang, C.S. Park, Y.H. Kim, “Effects of CeO2 Additive on Redox Characteristics of Fe-based Mixed Oxide Mediums for Storage and Production of Hydorgen” International Journal of Hydorgen Energy, Vol. 34, pp. 1417-1422, (2009).
    82.S. Takenak, K. Nomura, N. Hanaizumi, K. Otsuka, “Storage and Formation of Pure Hydorgen Mediated by the Redox of Modified Iron Oxides” Applied Catalysis A: General, Vol. 282, pp. 333-341, (2005).
    83.S. Takenak, N. Hanaizumi, V.T.D. Son, K. Otsuka, “Production of Pure Hydorgen from Methane Mediated by the Redox of Ni- and Cr-added Iron Oxides” Journal of Catalysis, Vol. 228, pp. 405-416, (2004).
    84.H. Wang, X.Q. Feng, X.F. Wang, S.P. Cheng, S.L. Gao, “Hydorgen Production by Redox of Bimetal Cation-modified Iron Oxide” International Journal of Hydorgen Energy, Vol.33, pp. 7122-7128, (2008).
    85.X.J. Liu, H. Wang, “Hydorgen Production from Water Decomposition by Redox of Fe2O3 Modified with Single-or Double-metal Additives” Journal of Solid State Chemistry, Vol. 183, pp. 1075-1082, (2010).
    86.S. Hu, G. Liu, D. Zhu, C. Chen, S. Liao, “Synthesis, Characterization, and Evaluation of Boron-Doped Iron Oxides for the Photocatalytic Degradation of Atrazine under Visible Light” International Journal of Photoenergy, Vol. 2012, pp. 1-4, (2011).
    87.M.H. Khedr, “Isothermal Reduction Kinetics at 900-1100˚C of NiFe2O4 Sintered at 1000-1200˚C” Journal of Analytical and Applied Pyrolysis, Vol. 73, pp. 123-129, (2005).
    88.莊家哲,向性一,「Ce0.6Zr0.4O2奈米粉末之相分離行為與氧化還原特性」,中華民國陶業研究學會 會刊,國立成功大學資源工程研究所(2012)。
    89.Z. Sun, Q. Zhou, L.S. Fan, “Reactive Solid Surface Morphology Variation via Ionic Diffusion” Langmuir, Vol. 28, pp. 11827-11833, (2012).
    90.林保賢,「製備錠狀氧化鐵載氧體擔載Al2O3及TiO2惰性載體,並應用於化學迴圈燃燒與產氫之探討」,碩士論文,國立台灣科技大學(2013)。
    91.K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, T. Wiltowski, “Effect of Gas Composition on the Kinetics of Iron Oxide Reduction in a Hydorgen Production Process” International Journal of Hydorgen Energy, Vol. 30, pp. 1543-1554, (2005).

    無法下載圖示 全文公開日期 2018/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE