簡易檢索 / 詳目顯示

研究生: 徐凡
Fan, Hsu
論文名稱: 錳-鐵氧化物系統運用於化學迴路燃燒程序之研究
Study of Mn-Fe Oxide System for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 125
中文關鍵詞: 化學迴圈燃燒程序氧化錳氧化鐵錳礦載氧體
外文關鍵詞: Chemical Looping Combustion, Manganese oxide, Iron oxide, Manganese ore, Oxygen Carrier
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全球暖化日益嚴重,因此碳捕捉以及封存已經是世界各國致力發展之技術,其中又以化學迴路燃燒程序不需耗費大量成本以及資源就可以將二氧化碳分離出來,使其後續捕捉二氧化碳更輕易。在化學迴路燃燒程序中又以載氧體為整個反應迴圈之核心,載氧體之反應性質會影響整體反應的進行,由於載氧體之製備非常的耗時耗力且成本相當高,因此本實驗評估天然錳礦運用於化學迴路燃燒程序之可行性。
    經過500℃熱處理之錳礦其主要成分為(Mn, Fe)2O3,所以本實驗先使用Mn2O3以及Fe2O3利用機械混和之方式將其混和均勻,並將混和均勻之樣品於高溫下進行鍛燒得到(Mn, Fe)2O3粉體。之後利用X光繞射儀鑑定材料成分與結構、場發射掃描式電子顯微鏡觀察粉體之微觀結構以及熱重分析儀測試(Mn, Fe)2O3載氧體對合成氣、氫氣及甲烷之反應活性和反應機制。
    將錳鐵複合載氧體粉體以及錳礦粉體於實驗出之最佳製備及操作參數於熱重分析儀和實驗室級半套式流體化床反應器進行測試,其於多圈氧化/還原反應中具有良好之性能,因此錳礦作為載氧體運用於化學迴路燃燒程序中將具有很大之潛力。


    As the global warming issue worsens gradually, the Carbon Capture and Storage (CCS) techniques have been a goal to be committed for each government worldwide. Among the techniques of CCS, The chemical-looping combustion (CLC) process is a novel solution for efficient combustion with direct separation of carbon dioxide. The process uses a metal oxide as oxygen carrier to transfer oxygen from air to fuel reactor, where the fuel reacts with solid oxygen carrier. Unfortunately, the preparation of Oxygen carrier is time consuming and costly. Therefore, this study devotes to assessing the reaction by using manganese ore as the Oxygen carrier of CLC process.
    After calined at 500℃, the main compound of manganese ore is (Mn, Fe)2O3. Therefore, this study firstly investigated the reactivity of (Mn, Fe)2O3 as oxygen carriers in CLC process. (Mn, Fe)2O3 powder was prepared by mechanical stirring Mn2O3 and Fe2O3 in a high temperature solid-state reaction. The crystalline phases of the powder were identified by X-ray diffraction (XRD), surface morphology of powder was analyzed with Field-Emission Scanning Electron Microscopy (FE-SEM) and the mechanism of reduction behavior was determined by Thermogravimetric Analyzer (TGA).
    (Mn, Fe)2O3 was tested under optimized parameters and process, then applied to FxBR and Fluidized Bed Reactor (FBR). The results show the feasibility of using the (Mn, Fe)2O3 systems as candidate of oxygen carrier in a reversible chemical looping combustion process.

    目錄 第一章 緒論 4 1.1 前言 4 1.2 研究動機 5 第二章 文獻回顧 6 2.1 化學迴路燃燒程序 6 2.2 載氧體之性質 8 2.2.1氧化還原性質 8 2.2.2 載氧量 9 2.2.3 機械強度 10 2.2.4 抗團聚能力 11 2.2.5 成本 11 2.2.6 環境友善性 13 2.3 載氧體的種類 13 2.3.1 鐵系載氧體 13 2.3.2 錳系載氧體 16 2.3.3 銅系載氧體 20 2.3.4鈷系載氧體 22 2.3.5鎳系載氧體 23 2.4 複合型載氧體 25 2.4.1 鐵鎳複合載氧體(氧化鐵-氧化鎳) 27 2.4.2鐵錳複合載氧體(氧化鐵-氧化錳) 28 2.4.3鐵銅複合載氧體(氧化鐵-氧化銅) 30 2.4.4 銅鎳複合載氧體(氧化銅-氧化鎳) 31 2.5 天然礦石載氧體 32 2.5.1 鈦鐵礦 32 2.5.2 赤鐵礦 33 2.5.3 錳礦 34 2.4 燃料種類 36 2.5 廢棄物與循環經濟 37 2.6 反應器設計及種類 38 2.6.1 固定床反應器 38 2.6.2 流體化床反應器 39 2.6.3 移動床反應器 41 第三章 實驗設備與程序 42 3.1 實驗藥品 43 3.2 材料製備 44 3.2.1 製備錳鐵複合載氧體 44 3.2.2 錳礦載氧體製備流程 46 3.3 實驗設備與分析儀器 47 3.3.1 全反射X光螢光分析儀(Total-reflection X-ray Fluorescence Spectrometer, TXRF) 47 3.3.2 X光繞射儀(X-Ray Diffractometer, XRD) 48 3.3.3 場發射掃瞄式電子顯微鏡(Field Emission Scanning Electron Microscopy, FE-SEM) 49 3.3.4 熱重分析儀(Thermogravimetric Analyzer, TGA) 50 3.3.5 磨耗測試儀(Air-jet attrition tester) 51 3.3.6 實驗級半套式流體化床反應器(Lab-scaled semi-fluidized bed reactor) 52 第四章 結果與討論 54 4.1 錳鐵複合載氧體材料 54 4.1.1 (Mn,Fe)2O3載氧體之材料分析 54 4.1.2 (Mn,Fe)2O3載氧體材料之氧化還原特性分析 58 4.1.3 (Mn,Fe)2O3載氧體材料之多圈氧化/還原特性分析 70 4.2 實驗室級半套式流體化床反應器測試 81 4.3 錳礦材料運用於化學迴路燃燒程序 89 4.3.1 錳礦材料分析 89 4.3.2 錳礦材料還原特性分析與多圈氧化/還原性質分析 93 4.4 錳礦運用於實驗室級半套式流體化床實驗 95 第五章 結論與未來展望 98 5.1 錳鐵複合載氧體材料之材料性質 98 5.2 錳礦作為載氧體運用於化學迴路燃燒程序 100 5.3 未來展望 101 第六章 參考資料 102

    參考資料
    1. H. Herzog, B. Eliasson, O. Kaarstad, Capturing greenhouse gases, Sci. Am. 282 (2000) 72-79.
    2. International Energy Agency, World energy investment outlook | Special report, Paris, France, 2014.
    3. Duke university, Google Earth & Environmental Problems and Solutions
    4. A. Nandy, C. Loha, S. Gu, P. Sarkar, M. K. Karmakar, P. K. Chatterjee, Present status and overview of chemical looping combustion technology, Renew. Sust. Energ. Rev. 59 597-619 (2016).
    5. H. Fang, L. Haibin, Z. Zengli, Advancements in development of chemical-looping combustion: a review, Int. J. Greenh. Gas Con. 1-16 (2009).
    6. National Energy Technology Laboratory, DOE/NETL carbon dioxide capture and storage RD&D roadmap, U.S., 2010.
    7. P.C. Chiu, Y. Ku, Chemical looping process - a novel technology for inherent CO2 capture, Aerosol Air Qual. Res., 12, 1421-1432 (2012).
    8. H.J. Richter, K.F. Knoche, Reversibility of combustion process, efficiency and costing, ACS Symp. Ser. 235 71-85 (1983).
    9. P. Moldenhauer, M. Rydén, A. Lyngfelt, Testing of minerals and industrial by-products as oxygen carriers for chemical-looping combustion in a circulating fluidized-bed 300W laboratory reactor, Fuel 93 351-63 (2012).

    10. K.S. Kang, C.H. Kim, K.K. Bae, W.C. Cho, S.H. Kim, C.S. Park, Oxygen-carrier selection and thermal analysis of the chemical-looping process for hydrogen production, Int. J. Hydrogen Energy 35 12246-12254 (2010).
    11. B. Kronberger, G. Löffler, H. Hofbauer, Simulation of mass and energy balances of a chemical-looping combustion system, Int. J. Energy Clean Env. 6 1-14 (2005).
    12. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, Mapping of the range of operational conditions for Cu-, Fe- and Ni-based oxygen carriers in chemical-looping combustion, Chem. Eng. Sci. 62 533-549 (2007).
    13. J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 215-282 (2012).
    14. M.M. Hossain, H.I. de Lasa, Chemical-looping combustion (CLC) for inherent CO2 separations - a review, Chem. Eng. Sci. 63 4433-4451 (2008).
    15. Quddus, Mohammad Rezwanul. "A novel mixed metallic oxygen carrier for chemical looping combustion: preparation, characterization and kinetic modeling." (2013).
    16. Mineral commodity summaries. U.S. Geological Survey, ISBN 978-1-4113-2666-8 (2010).
    17. J. Bessieres, A. Bessieres, J. J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen,” International Journal of Hydrogen Energy,” Vol. 5, 585-595 (1980).
    18. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, 61-67 (2003).
    19. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres,” Applied Catalysis A: General, VOL. 326, 17-27 (2007).
    20. T. Song, L-H. Shen, J. Xiao, Z-P. Gao, H-M. Gu, S-W. Zhang, “Characterization of Hematite Oxygen Carrier in Chemical-Looping Combustion at High Reduction Temperature,” Journal of Fuel Chemistry and Technology, Vol. 39, 567-574 (2011).
    21. A. Abad, F. García-Labiano, L. F. de Diego, P. Gayán, J. Adánez, “Reduction Kinetics of Cu-, Ni- and Fe-Based Oxygen Carriers Using Syngas (CO+H2) for Chemical Looping Combustion,” Energy & Fuels, Vol. 21, 184-153 ( 2007).
    22. H. Leion, T. Mattisson, A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion,” Fuel, Vol. 86, 1947-1958 (2007).
    23. Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as Support,” Industrial & Engineering Chemistry Research, Vol. 44, 3485-3496 (2005).
    24. M. M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC),” Chemical Engineering Research and Design, Vol. 88, 1505-1514 (2010).
    25. 劉祐誠,「以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
    26. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, 267-272 (2012).
    27. E.R. Stobbe, B.A. de Boer, J.W. Geus, “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catalysis Today, Vol. 47, 161-167 (1999).
    28. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, 655-666 (2007).
    29. J. Adánez, P. Gayán, J. Celaya, L.F. de Diego, F. Garcia-Labiano, A. Abad,“Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion”Insustrial & Engineering Chemistry Research, Vol. 45, 6075-6080.
    30. M. Johansson, T. Mattisson, A. Lyngfelt, “Investigation of Mn3O4 with Stabilized ZrO2 for Chemical Looping Combustion,” Institution of Chemical Engineers, Vol. 84, 807-818 (2006).
    31. T. Mattisson, A. Lyngfelt, H. Leion, Chemical-looping with oxygen uncoupling for combustion of solid fuels, Int. J. Greenh. Gas Con. 3 11-19 (2009).
    32. A. Shulman, E. Cleverstam, T. Mattisson, A. Lyngfelt, Chemical-looping with oxygen uncoupling using Mn/Mg-based oxygen carriers - oxygen release and reactivity with methane, Fuel 90 941-950 (2011).

    33. A. Lyngfelt. "Chemical-looping combustion of solid fuels–status of development." Applied Energy 113 1869-1873 (2014).
    34. L.F. de Diego, F. Garcvía-Labiano, J. Adá nez, P. Gayan, A. Abad, B.M. Corbella, J.M. Palacios,“Development of Cu-based oxygen carriersfor chemical-looping combustion”Fuel, Vol. 83 pp.1749-1757 (2004).
    35. J. Adánez, P. Gayán, J. Celaya, L.F. de Diego, F. Garcia-Labiano, A. Abad,“Chemical Looping Combustion in a 10 kWth Prototype Using a CuO/Al2O3 Oxygen Carrier: Effect of Operating Conditions on Methane Combustion”Insustrial & Engineering Chemistry Research, Vol. 45,6075-6080 (2015).
    36. T. Mattisson, A. Järdnäs, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen - Application for Chemical Looping Combustion,” Energy & Fuels, Vol. 17, 643-651 (2003).
    37. P. Gay´an, L. F. de Diego, F. Garc´ıa-Labiano, J. Ad´anez, A. Abad, C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, 2641–2650 (2008).
    38. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, 267-272 (2012).
    39. M. Arjmand, “Copper in Chemical-Looping Combustion (CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU),” Department of Chemical and Biological Engineering Chalmers University of Technology (2012).
    40. L. F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán, “Synthesis Gas Generation by Chemical-Looping Reforming in a Batch Fluidized Bed Reactor Using Ni-Based Oxygen Carriers,” Chemical Engineering Journal, Vol. 144, 289-298 (2008).
    41. H. Jina, M. Ishida, “Reactivity study on a novel hydrogen fueledchemical-looping combustion”International Journal of Hydrogen Energy, Vol.26, 889-894 (2001)。
    42. S. Wang, G. Wang, F. Jiang, M. Luo, H. Li, “Chemical Looping Combustion of Coke Oven Gas by Using Fe2O3/CuO with MgAl2O4 as Oxygen Carrier,” Energy & Environmental Science, Vol. 3, 1353-1360 (2010).
    43. 徐維懋,「鎳鐵氧化物尖晶石結構載氧體之材料特性與惰性擔體之選用應用於化學迴圈性能評估」,碩士論文,國立台灣科技大學(2012)。
    44. A. Lambert, C. Delquié, I. Clémençon, E. Comte, V. Lefebvre, J. Rousseau, B. Durand,“Synthesis and Characterization of Bimetallic Fe/Mn Oxides for Chemical Looping Combustion,” Energy Procedia, Vol. 1, 375-381 (2009).
    45. J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, A. Abad,“Nickel-Copper Oxygen Carriers to Reach Zero CO and H2 Emissions in Chemical-Looping Combustion,” Industrial & Engineering Chemistry Research, Vol. 45, 2617-2625 (2006).
    46. M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, “Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion,” Fuel, Vol. 89, 3523-3533 (2010).
    47. H. Leion, A. Lyngfelt, M. Johansson, E. Jerndal, T. Mattisson, “The Use of Ilmenite as an Oxygen Carrier in Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 8 6, 1017-1026 (2008).
    48. P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, 5542-5547 (2009).
    49. T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia Hematite Oxygen Carrier in Chemical Looping Combustion with Coal,” International Journal of Greenhouse Gas Control, Vol. 11, 326-336 (2012).
    50. S. Sundqvist, M. Arjmand, T. Mattisson, M. Ryden, A. Lyngfelt, Screening of different manganese ores for chemical-looping combustion (CLC) and chemical looping with oxygen uncoupling (CLOU), Int. J. Greenh. Gas Control 43 179–188 (2015).
    51. R. Kononov, O. Ostrovski, S. Ganguly, Carbothermal solid state reduction of manganese ores: 3. phase development, ISIJ Int. 49 1099–1106 (2009).
    52. S. Sundqvist, K. Nazli, L. Henrik, Manganese ores as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) 2552-2563 (2017).
    53. E. Jerndal, T. Mattisson, A. Lyngfelt, “Thermal Analysis of Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 84, 795-806 (2006).
    54. T. Song, J. Wu, H. Zhang, L. Shen, “Characterization of an Australia Hematite Oxygen Carrier in Chemical Looping Combustion with Coal,” International Journal of Greenhouse Gas Control, Vol. 11, 326-336 (2012).
    55. P. C. Chiu, Y. Ku, “Chemical Looping Process - A Novel Technology for Inherent CO2 Capture,” Aerosol and Air Quality Research, Vol. 14, 1421-1432 (2012).
    56. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, 2498-2505 (2009).
    57. P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, 5542-5547 (2009).
    58. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, 2498-2505 (2009).
    59. P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, 5542-5547 (2009).
    60. G. Azimi. "Investigation of different Mn–Fe oxides as oxygen carrier for chemical-looping with oxygen uncoupling (CLOU)." Energy & Fuels 367-377 (2012).
    61. Y. Larring. "Evaluation of a mixed Fe–Mn oxide system for chemical looping combustion." Energy & Fuels 3438-3445 (2015).
    62. Azimi, Golnar. "Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU)." International Journal of Greenhouse Gas Control, 34 12-24 (2015).
    63. G. Azimi, T. Mattisson, H. Leion, (2015). Comprehensive study of Mn–Fe–Al oxygen-carriers for chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 34, 12-24 (2015).
    64. C.Y. Wen, Y.H. Yu, A generalized method for predicting the minimum fluidization velocity, AIChE J. 12 610-612 (1996).
    65. P. Gayán, A. Cabello, F. García-Labiano, A. Abad, L.F. de Diego, J. Adánez, Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support, Int. J. Greenh. Gas Con. 14 209-219 (2013).
    66. S. T. Norberg, "In situ neutron powder diffraction study of the reaction M 2 O 3↔ M 3 O 4↔ MO, M=(Fe 0.2 Mn 0.8): implications for chemical looping with oxygen uncoupling." CrystEngComm 5537-5546 (2016).

    無法下載圖示 全文公開日期 2023/08/08 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE