簡易檢索 / 詳目顯示

研究生: 陳柏融
Po-Jung Chen
論文名稱: 含對稱或不對稱第三丁基聚醯亞胺之介電性質研究
Study on Dielectric Properties of Polyimides Containing Symmetric or Asymmetric tert-Butyl Groups
指導教授: 陳燿騰
Yaw-Terng Chern
口試委員: 曾文祺
Wen-Chi Tseng
邱昱誠
Yu-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 78
中文關鍵詞: 對稱構型聚醯亞胺5G高頻材料損耗因數
外文關鍵詞: Symmetric configuration, Polyimide, 5G high frequency material, Dissipation factor
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成由含對稱第三丁基之二胺單體1,4-Bis(4-aminophenoxy)2,5-di-tert-butylbenzene (DTB/O/NH2)與不對稱第三丁基之二胺單體1,4-Bis(4-aminophenoxy)2,6-di-tert-butylbenzene (P/DTP/NH2)與三種酸酐:1,4-Phenylene bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate)(TAHQ)、3,3',4,4'-Biphenyltetracarboxylic dianhydride(BPDA)、4,4'-Hexafluoroisopropylidene daphthalic dianhydride(6FDA)進行聚縮合反應合成聚醯亞胺(PI),其固有黏度範圍在0.28~2.19 dL/g之間,均可塗佈成具有韌性之薄膜;這些聚合物有好的熱安定性,於氮氣下10%熱重損失溫度皆在451"℃" 以上,而氮氣下的開始裂解溫度也在426"℃" 以上;在機械性質方面PI聚合物薄膜的抗張強度介於82~111 MPa;PI聚合物之吸水率介於0.56~1.56%之間,而吸水率隨著交聯密度的上升而下降;這些PI聚合物也具有低的介電常數(Dk)與損耗因數(Df),在10 GHz下Dk介於2.67~3.05之間而Df介於0.0049~0.013之間。而本研究也探討交聯形成網狀結構來限制分子運動與Df之關係,選用兩種末端基:Maleic anhydride(MA)與Nadic Anhydride (NA)形成交聯PI共聚物,交聯後PI共聚物,在目前交聯度設計下顯示無法有效降低Df,這可能是因為交聯度不夠高,因而無法有效抑制分子鏈運動。


    In this study, the diamine monomer 1,4-Bis(4-aminophenoxy)2,5-di-tert-butylbenzene (DTB/O/NH2) containing symmetric tert-butyl groups and 1,4-Bis(4-aminophenoxy)2,6-di-tert-butylbenzene (P/DTP/NH2) containing asymmetrical tert-butyl groups were synthesized. The polyimides (PIs) were synthesized by condensation polymerization from these two monomer, with three of anhydrides, 1,4-Phenylene bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate)(TAHQ), 3,3',4,4'- Biphenyltetracarboxylic dianhydride(BPDA) and 4,4'-Hexafluoroisopropylidene-daphthalic dianhydride(6FDA).They had inherent viscosities of 0.28~2.19 dL/g, and they could form tough and flexible films. The PIs exhibited high thermal stability with 10% decomposition temperature more than 451"℃" in nitrogen, and their onset temperature was more than 426"℃" in nitrogen. These films exhibited good mechanical properties with tensile stress between 82~111 MPa. The water uptake of PIs were between 0.56~1.56% and decreased with the increase of crosslink density. These PIs also had low dielectric constant (Dk) and low dissipation factor (Df). The range of Dk at 10 GHz is between 2.67 and 3.05, while the range of Df is between 0.0049 and 0.013. We also investigated the relationship between cross-linking to form a network structure to limit molecular motion and decrease Df. We chose two end-capped Maleic anhydride (MA) and Nadic Anhydride (NA) to form cross-linking PI copolymers. After cross-linking, Df of those PIs did not obviously reduce under current cross-linkage design, which might be because the degree of cross-linking was not high enough to effectively inhibited the movement of molecular chains.

    中文摘要 I Abstract II 目錄 IV 圖索引 VI 表索引 VIII 第一章 緒論 1 1.1前言 1 1.2 5G介紹 3 1.2.1 5G的特點 3 1.2.2 5G的發展 4 1.2.3 5G毫米波市場機會與挑戰 6 1.2.4高頻材料的傳輸損耗 9 1.3印刷電路板 11 1.4高頻軟板材料種類 14 1.4.1聚醯亞胺(PI) 14 1.4.2改質型聚醯亞胺(MPI) 18 1.4.3液晶聚合物(LCP) 20 第二章 低介電常數與低損耗因數MPI的文獻回顧 21 2.1降低介電常數 21 2.2降低損耗因數 25 2.3研究動機與內容 27 第三章 實驗 29 3.1實驗藥品 29 3.2實驗程序 32 3.2.1單體合成 33 3.2.2聚醯亞胺薄膜合成 34 3.3聚合物之物性與化性分析 38 第四章 結果與討論 41 4.1 PIs的合成 41 4.2固有黏度 43 4.3確認交聯反應 44 4.4熱性質分析 47 4.5機械性質測量 53 4.6吸濕性測試 54 4.7介電性質分析 57 第五章 結論 59 第六章 參考文獻 60

    1. 5G應用
    https://www.managertoday.com.tw/articles/view/58098
    2. 5G生態圈
    https://www.dbs.com/livemore/tw-zh/serious-talk/wm312.html
    3. 行政院台灣5G行動計畫https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/087b4ed8-8c79-49f2-90c3-6fb22d740488
    4. Al-Falahy, N.; Alani, O. Y. Millimetre wave frequency band as a candidate spectrum for 5G network architecture: A survey. Physical Communication 2019, 32, 120-144.
    5. Marcus, M.; Pattan, B. Millimeter wave propagation: spectrum management implications. IEEE Microwave Magazine 2005, 6 (2), 54-62.
    6. 5G通訊關鍵材料產業發展趨勢2019 ITRI工業技術研究院
    7. Pi, Z.; Khan, F. An introduction to millimeter-wave mobile broadband systems. IEEE communications magazine 2011, 49 (6), 101-107.
    8. Hirokawa, Y.; Arisawa, T.; Hanazaki, S.; Nishino, M.; Abe, T. Advanced PCB Lamination Material Development for High-Speed Networking Application. In 2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sapporo/APEMC), 2019; IEEE: pp 92-95.

    9. Tasaki, T.; Shiotani, A.; Yamaguchi, T.; Sugimoto, K. Low Dk/Df polyimide adhesives for low transmission loss substrates. Transactions of The Japan Institute of Electronics Packaging 2018, 11, E17-006-001-E017-006-007.
    10. Guan, Z.; Endo, A.; Hanada, T. Development of multi-layered build-up insulation dry-film material for ultra-low transmission loss wirings for high-speed semi-conductor packaging. In 2018 IEEE 68th Electronic Components and Technology Conference (ECTC), 2018; IEEE: pp 40-44.
    11. iPhone手機FPC用量表
    https://www.xytdfpc.com/cn/news/Smartphone-FPC-usage-new-normal-78.html
    12. Koh, M.; Yoneda, K.; Nakada, K.; Sekiguchi, S.; Mishima, S.; Ishikawa, N.; Ogata, T. Novel Isotropic Film for 5G Application. Transactions of The Japan Institute of Electronics Packaging 2022, 15, E21-009-001-E021-009-006.
    13. Li, J.; Zhang, G.; Yao, Y.; Jing, Z.; Zhou, L.; Ma, Z. Synthesis and properties of polyimide foams containing benzimidazole units. RSC advances 2016, 6 (65), 60094-60100.
    14. Sugimoto, E. Applications of polyimide films to the electrical and electronic industries in Japan. IEEE Electrical Insulation Magazine 1989, 5 (1), 15-23.
    15. Nishikawa, M.; Taheri, B.; West, J. L. Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure. Applied Physics Letters 1998, 72 (19), 2403-2405.
    16. Wang, Y.; Wang, H.; Liu, F.; Wu, X.; Xu, J.; Cui, H.; Wu, Y.; Xue, R.; Tian, C.; Zheng, B. Flexible printed circuit board based on graphene/polyimide composites with excellent thermal conductivity and sandwich structure. Composites Part A: Applied Science and Manufacturing 2020, 138, 106075.
    17. Kim, Y. S. Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sensors and Actuators B: Chemical 2006, 114 (1), 410-417.
    18. Genies, C.; Mercier, R.; Sillion, B.; Cornet, N.; Gebel, G.; Pineri, M. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes. Polymer 2001, 42 (2), 359-373.
    19. He, Y.; Tong, C.; Geng, L.; Liu, L.; Lü, C. Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide. Journal of Membrane Science 2014, 458, 36-46.
    20. Liu, Y.; Wang, R.; Chung, T. S. Chemical cross-linking modification of polyimide membranes for gas separation. Journal of Membrane Science 2001, 189 (2), 231-239.
    21. Chung, T. S.; Lin, W. H.; Vora, R. H. The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers. Journal of Membrane Science 2000, 167 (1), 55-66.
    22. Ghosh, I.; Konar, J.; Bhowmick, A. K. Surface properties of chemically modified polyimide films. Journal of adhesion science and technology 1997, 11 (6), 877-893.
    23. Stenzenberger, H. Addition polyimides. High Performance Polymers 1994, 165-220.
    24. Morgan, R. J.; Shin, E. E.; Rosenberg, B.; Jurek, A. Characterization of the cure reactions of bismaleimide composite matrices. Polymer 1997, 38 (3), 639-646.
    25. Radue, M. S.; Varshney, V.; Baur, J. W.; Roy, A. K.; Odegard, G. M. Molecular modeling of cross-linked polymers with complex cure pathways: a case study of bismaleimide resins. Macromolecules 2018, 51 (5), 1830-1840.
    26. Iredale, R. J.; Ward, C.; Hamerton, I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides. Progress in Polymer Science 2017, 69, 1-21.
    27. Dynes, P.; Panos, R.; Hamermesh, C. Investigation of the crosslinking efficiency of some additional curing polyimides. Journal of Applied Polymer Science 1980, 25 (6), 1059-1070.
    28. Stenzenberger, H. Recent advances in thermosetting polyimides. British Polymer Journal 1988, 20 (5), 383-396.
    29. Takahashi, T.; Takabayashi, S.; Inoue, H. Preparation of polyimide films from a-BPDA/ODA by one-pot and two-step imidization methods. High Performance Polymers 1998, 10 (1), 33-44.
    30. Sroog, C. Polyimides. Progress in Polymer Science 1991, 16 (4), 561-694.
    31. Volksen, W. Condensation polyimides: synthesis, solution behavior, and imidization characteristics. High performance polymers 1994, 111-164.
    32. Hasegawa, M.; Horii, S. Low-CTE polyimides derived from 2, 3, 6, 7-naphthalenetetracarboxylic dianhydride. Polymer journal 2007, 39 (6), 610-621.
    33. Hasegawa, M.; Tsujimura, Y.; Koseki, K.; Miyazaki, T. Poly (ester imide) s possessing low CTE and low water absorption (II). Effect of substituents. Polymer journal 2008, 40 (1), 56-67.
    34. Huang, X.; Mei, M.; Liu, C.; Pei, X.; Wei, C. Synthesis and characterization of novel highly soluble and optical transparent polyimides containing tert-butyl and morpholinyl moieties. Journal of Polymer Research 2015, 22 (9), 1-9.

    35. Yeo, H.; Goh, M.; Ku, B. C.; You, N.-H. Synthesis and characterization of highly-fluorinated colorless polyimides derived from 4, 4′-((perfluoro-[1, 1′-biphenyl]-4, 4′-diyl) bis (oxy)) bis (2, 6-dimethylaniline) and aromatic dianhydrides. Polymer 2015, 76, 280-286.
    36. Hu, X.; Mu, H.; Wang, Y.; Wang, Z.; Yan, J. Colorless polyimides derived from isomeric dicyclohexyl-tetracarboxylic dianhydrides for optoelectronic applications. Polymer 2018, 134, 8-19.
    37. Wang, C.; Chen, W.; Chen, Y.; Zhao, X.; Li, J.; Ren, Q. Synthesis and properties of new fluorene-based polyimides containing trifluoromethyl and isopropyl substituents. Materials Chemistry and Physics 2014, 144 (3), 553-559.
    38. White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature materials 2015, 14 (11), 1087-1098.
    39. Wang, X.; Engel, J.; Liu, C. Liquid crystal polymer (LCP) for MEMS: processes and applications. Journal of Micromechanics and Microengineering 2003, 13 (5), 628.
    40. Farrell, B.; St Lawrence, M. The processing of liquid crystalline polymer printed circuits. In 52nd Electronic Components and Technology Conference 2002.(Cat. No. 02CH37345), 2002; IEEE: pp 667-671.
    41. Thompson, D. C.; Tantot, O.; Jallageas, H.; Ponchak, G. E.; Tentzeris, M. M.; Papapolymerou, J. Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Transactions on Microwave Theory and Techniques 2004, 52 (4), 1343-1352.

    42. DeJean, G.; Bairavasubramanian, R.; Thompson, D.; Ponchak, G.; Tentzeris, M.; Papapolymerou, J. Liquid crystal polymer (LCP): A new organic material for the development of multilayer dual-frequency/dual-polarization flexible antenna arrays. IEEE Antennas and Wireless Propagation Letters 2005, 4, 22-26.
    43. Jilani, S. F.; Munoz, M. O.; Abbasi, Q. H.; Alomainy, A. Millimeter-wave liquid crystal polymer based conformal antenna array for 5G applications. IEEE Antennas and Wireless Propagation Letters 2018, 18 (1), 84-88.
    44. Altunyurt, N.; Rieske, R.; Swaminathan, M.; Sundaram, V. Conformal antennas on liquid crystalline polymer based rigid-flex substrates integrated with the front-end module. IEEE transactions on advanced packaging 2009, 32 (4), 797-808.
    45. Madhav, B. T. P.; Kaza, H.; KAZA, V.; MANIKANTA, P.; DHULIPALA, S.; KONIJETI, S. K.; BONAGIRI, A.; SHAIK, F. Liquid crystal polymer substrate based wideband tapered step antenna. Leonardo Electronic Journal of Practices and Technologies 2015, 26, 103-114.
    46. Simpson, J.; Clair, A. S. Fundamental insight on developing low dielectric constant polyimides. Thin Solid Films 1997, 308, 480-485.
    47. Hasegawa, M.; Sakamoto, Y.; Tanaka, Y.; Kobayashi, Y. Poly (ester imide) s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis (4-aminophenyl) terephthalate and effect of substituents. European polymer journal 2010, 46 (7), 1510-1524.
    48. Khune, G. Preparation and properties of polyimides from diisocyanates. Journal of Macromolecular Science—Chemistry 1980, 14 (5), 687-711.

    49. Chen, W.; Zhou, Z.; Yang, T.; Bei, R.; Zhang, Y.; Liu, S.; Chi, Z.; Chen, X.; Xu, J. Synthesis and properties of highly organosoluble and low dielectric constant polyimides containing non-polar bulky triphenyl methane moiety. Reactive and Functional Polymers 2016, 108, 71-77.
    50. Takekoshi, T.; Wirth, J.; Heath, D.; Kochanowski, J.; Manello, J.; Webber, M. Polymer syntheses via aromatic nitro displacement reaction. Journal of Polymer Science: Polymer Chemistry Edition 1980, 18 (10), 3069-3080.
    51. Bong, S.; Yeo, H.; Ku, B. C.; Goh, M.; You, N. H. Highly soluble polyimide based on asymmetric diamines containing trifluoromethyl group for high performance dielectric material. Macromolecular Research 2018, 26 (1), 85-91.
    52. Liu, C.; Pei, X.; Huang, X.; Wei, C.; Sun, X. Novel Non‐Coplanar and Tertbutyl‐Substituted Polyimides: Solubility, Optical, Thermal and Dielectric Properties. Chinese Journal of Chemistry 2015, 33 (2), 277-284.
    53. Bei, R.; Qian, C.; Zhang, Y.; Chi, Z.; Liu, S.; Chen, X.; Xu, J.; Aldred, M. P. Intrinsic low dielectric constant polyimides: relationship between molecular structure and dielectric properties. Journal of Materials Chemistry C 2017, 5 (48), 12807-12815.
    54. Fu, G.; Wang, W.; Li, S.; Kang, E.; Neoh, K.; Tseng, W.; Liaw, D. Nanoporous low-κ polyimide films prepared from poly (amic acid) s with grafted poly (methylmethacrylate)/poly (acrylamide) side chains. Journal of Materials Chemistry 2003, 13 (9), 2150-2156.
    55. Ju, J.; Wang, Q.; Wang, T.; Wang, C. Low dielectric, nanoporous fluorinated polyimide films prepared from PCL-PI-PCL triblock copolymer using retro-Diels–Alder reaction. Journal of colloid and interface science 2013, 404, 36-41.

    56. Misra, A. C.; Tesoro, G.; Hougham, G.; Pendharkar, S. M. Synthesis and properties of some new fluorine-containing polyimides. Polymer 1992, 33 (5), 1078-1082.
    57. Hougham, G.; Tesoro, G.; Viehbeck, A.; Chapple-Sokol, J. Polarization effects of fluorine on the relative permittivity in polyimides. Macromolecules 1994, 27 (21), 5964-5971.
    58. Song, N.; Yao, H.; Ma, T.; Wang, T.; Shi, K.; Tian, Y.; Zhang, B.; Zhu, S.; Zhang, Y.; Guan, S. Decreasing the dielectric constant and water uptake by introducing hydrophobic cross-linked networks into co-polyimide films. Applied Surface Science 2019, 480, 990-997.
    59. Meador, M. A. B.; Agnello, M.; McCorkle, L.; Vivod, S. L.; Wilmoth, N. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone. ACS Applied Materials & Interfaces 2016, 8 (42), 29073-29079.
    60. Araki, H.; Kiuchi, Y.; Shimada, A.; Ogasawara, H.; Jukei, M.; Tomikawa, M. Low Df polyimide with photosensitivity for high frequency applications. Journal of Photopolymer Science and Technology 2020, 33 (2), 165-170.
    61. Kuo, C. C.; Lin, Y. C.; Chen, Y. C.; Wu, P. H.; Ando, S.; Ueda, M.; Chen, W. C. Correlating the molecular structure of polyimides with the dielectric constant and dissipation factor at a high frequency of 10 GHz. ACS Applied Polymer Materials 2020, 3 (1), 362-371.
    62. Yagci, H.; Mathias, L. J. Synthesis and characterization of aromatic polyamides and polyimides from trimethyl-and di-t-butylhydroquinone-based ether-linked diamines. Polymer 1998, 39 (16), 3779-3786.

    63. Chern, Y. T.; Tsai, J. Y. Low dielectric constant and high organosolubility of novel polyimide derived from unsymmetric 1, 4-bis (4-aminophenoxy)-2, 6-di-tert-butylbenzene. Macromolecules 2008, 41 (24), 9556-9564.

    無法下載圖示 全文公開日期 2024/12/22 (校內網路)
    全文公開日期 2027/12/22 (校外網路)
    全文公開日期 2027/12/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE