簡易檢索 / 詳目顯示

研究生: 吳夏語
Sia-Yu Wu
論文名稱: 鋅鈮鋯鈦酸鉛材料系統應用於超音波元件之電性和疲勞研究
ELECTRICAL AND FATIGUE PROPERTIES OF LEAD-BASED ZINC NIOBATE CERAMICS USED IN ULTARSONIC SENSORS
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 曾俊元
Tseung-Yuen Tseng
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 相變化鋅鈮鋯鈦酸鉛溫度係數超音波雷達元件疲勞特性
外文關鍵詞: ultrasonic sensors, fatigue properties, PZNZT, temperature coefficient of capacitance
相關次數: 點閱:144下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文主要在探討鋅鈮鋯鈦酸鉛鐵電陶瓷系統的電性和疲勞特性。以鈦鋯酸鉛為主,添加入不同含量的鋅鈮酸鉛,控制材料的相變化以解決此材料在超音波倒車雷達上溫度係數的問題,並探討不同成 份下的介電、鐵電、壓電和疲勞的特性,進而選出適合應用於超音波感測器的材料。
目前超音波雷達元件,所面臨之主要問題在於各種特性之溫度係數變化,元件操作正切損耗之控制,材料可靠度與抗疲勞性能之掌控等。以超音波倒車雷達規格而言,在-35℃~80℃的溫度範圍,每度的電容值變化量應小於6 pF,因此本實驗藉由添加居里遷移劑(鈦鋯酸鉛),配製不同成份的鋅鈮鋯鈦酸鉛鐵電陶瓷系統,抑制相變化來降低電容的溫度係數。研究結果顯示,溫度係數可以降低至0.036 pF/℃。
由燒結溫度和密度量測可以得知,隨著鋅鈮酸鉛的添加量越多,材料內部ZnZr、、和 2NbTi• 的晶格缺陷也會越多,這將促進燒結速率和緻密化;由X光繞射分析所知,鋅鈮鋯鈦酸鉛系統中,同時存在菱方晶與正方晶,且鋯鈦酸鉛成份較多時,偏向正方晶結構,且正方性(c/a)會變大,造成鐵電轉順電相更困難,居里溫度因而提高。在壓電性量測方面,在鋅鈮酸鉛含量為20 mole%時,試片同時存在菱方晶與正方晶相,且晶粒大小(2.3 μm)具有最大的機電偶合係數(71%)。
鐵電與疲勞特性量測結果顯示,鋅鈮鋯鈦酸鉛系統都具有相當大的殘留極化值(40 μC/cm2)和低的矯頑電場(11 kV/cm),換句話說,此材料系統很軟,只需要非常小的電場即可將極化隨著電場方向而移動。對於疲勞測試而言,此材料的殘留極化值會先下降,接著矯頑電場才會上升,主要原因可能來自於電極界面破壞或剝離,使可作用電場降低,殘留極化值先下降。鋯鈦酸鉛含量多的系統,材料內部存在較多的正方晶,偶極矩越不容易隨著電場而轉動,極化較困難,使得矯頑電場變得越大,容易產生電域釘鎖的現象,疲勞提早發生。
综合上述實驗結果,了解鋅鈮鋯鈦酸鉛擁有高的壓電係數和低的溫度係數,只需要小的電場即可將極化轉動,且可以在1150℃燒結完成,節省能源,因此可作超音波元件,用來接收和發射超音波的訊號。但是因為其品質因子較小,較適合用在低功率的感測器和致動器等元件材料。


The x(Pb(Zn1/3Nb2/3 )O3 ) + (1-x)(Pb(Zr0.52Ti0.48 )O3) (PZNZT) ceramics, which were used in ultrasonic radar system, were investigated to improve the characteristics of the temperature coefficient of capacitance (TCC), piezoelectric and fatigue properties. Various compositions (x=0~0.5) of PZNZT systems were designed to control the phase transformation and relaxor behavior, and to reduce the TCC at the temperature range from 25℃ to 80℃. We found that PZNZT system at the composition of x=0.1 which has high curie temperature (384℃) can reduce the TCC to 72 ppm/℃, but the sintering temperature of the specimen is higher than 1150℃. In electrical properties, the composition of x=0.2 has a high electrical mechanical coupling coefficient of 71%, high remant polarization (Pr) of 40 μC/cm2 and low coercive field (Ec) of 11 kV/cm. Specimens at this composition show higher fraction of the tetragonal phase, and it will make domain hard to switch and induce larger Pr reduction than the specimens containing more rhombohedra phase (x=0.4-0.5) after fatigue tests. In these experiments, we know that PZNZT system having high kp, low TCC and low Qm, is suitable to use in low power ultrasonic sensor.

目 錄 中文摘要………………………………………………….…….i 英文摘要……..………………………………………………..iii 誌 謝………..…………………………...………………...iv 目 錄………..……………………………………………...v 圖 目 錄…………..……………………………………...….viii 表 目 錄..…………..……………………………………....... xi 第一章 前言與文獻回顧………………………..……...…….1 1.1 前言…….................................................................................1 1.2 文獻回顧…………………………………………………….3 1.2.1 陶瓷電容器之分類與應用…………....................................3 1.2.2 電容器的介電行為…………................................................5 1.2.3 降低電容溫度係數原理……................................................9 1.2.4 壓電陶瓷之超音波應用及溫度係數規格..........................17 1.2.5 元件疲勞機制……..............................................................24 1.2.6 鋅鈮鋯鈦酸鉛複合材料系統…………..............................27 第二章 實驗方法及材料的特性分析…………………........36 2.1 實驗藥品規格………………………………………….…..36 2.2 實驗儀器規格…………….…………………..……………37 2.3 實驗步驟……………….………………………………….39 2.3.1 粉末製備…………………………………………………39 2.3.2 成型(forming)………………………………………….…39 2.3.3 燒結(sintering)………..…………………………..……...39 2.3.4 電極與極化處理製作……………………………………40 2.3.5 基本性質量測與觀察……………………………………40 2.4 溫度係數(TC)(電容量-溫度特性)量測………………42 2.5 電性量測...................…………………………………......43 2.5.1 極化值與電場(P-E)曲線量測………………...……43 2.5.2 介電常數對溫度(D-T)曲線量測….………..……....43 2.5.3 壓電特性量測……………….………………………..….43 第三章 不同成份的鋅鈮鋯鈦酸鉛陶瓷系統特性之研究....48 3.1 不同成份對鈣鈦礦成相的影響……………………….…49 3.2 不同成份對燒結溫度的影響……….……………………57 3.3 控制相變化解決溫度係數之問題…….…………………64 3.4 不同成份對鈣鈦礦壓電、機械品質特性的影響…….....72 3.5 不同成份對鈣鈦礦鐵電特性之影響………….................77 3.6 不同成份對疲勞特性的影響……….……………………80 第四章 結論……………………..………….…………......…………85 參 考 文 獻…………………………………………………..89 附錄..…………..………………………………………….……94 (一) 等級Ⅰ電容器介電特性表...........................................................94 (二) 等級Ⅱ、等級Ⅲ、等級Ⅳ級電容器介電特性表.......................95 (三) 超音波感測器規範 (QT40-15 Transducer Specification)...........96 (四) 超音波感測器規範 (Approval Sheet of 40CA-18E)...................97 (五) Material characteristics of the lead zirconate titanate materials (hard ceramics)………………………………………………...98 (六) Material characteristics of the lead zirconate titanate materials (soft ceramics)………………………………………………..100

參考文獻
1. Y. H. Xu, “Ferroelectric Materials and Their Applications”, North-Holland, New York, 102(1991).
2. L. Moulson, I. M. Herbert, “Electroceramics”, Chapman and Hall, New York U.S.A.
3. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, S. B. Warner, “The science and design of engineering materials”, Richard D. Irwin. Inc., Chicago U.S.A. pp. 497-503 (1995)..
4. 誘電體工學, 岡崎清, 學獻社, (1969)
5. 積層陶瓷電容, 學獻社, (1988).
6. “低溫燒成含鉛介電材料之研究”,陳光福,成大電機博士論文, (1988)
7. The Role of Positional Disorder in Ferroelectric Relaxors, Setter, Ph.D Thesis, Pennsylvania State Uni.,(1980)
8. M. Pilgrim, A. E. Sutherland and S. R. Winzer,” Diffuseness as a useful parameter for relaxor ceramics,” J. Am. Ceram. Soc., Vol. 73, No. 10, pp. 3122-3125 (1990).
9. H. M. Jang and S. M. Cho,” Short-Range Ordering in Pb(B’B”)O3–Type Relaxor Ferroelectrics,” J. Am. Ceram. Soc., Vol. 83, No. 7, pp. 1699-1670 (2000).
10. . X. Dai, Z. Xu and D. Viehland,” Long-Time Relaxation from Relaxor to Normal Ferroelectric States in Pb0.91La0.06(Zr0.65Ti0.35)O3,” J. Amer. Ceram. Soc., Vol. 79, No. 7, pp. 1957-1960 (1996).
11. D. Viehland and J. F. Li,” Dependence of the glasslike characteristics of relaxor ferroelectrics on chemical ordering,” J. Appl. Phys., Vol. 75. No. 3, pp. 1705-1709 (1994).
12. D. Viehland, S. J. Jang, L. E. Cross, and M. Wutting,” Local polar configurations in lead magnesium niobate relaxors,” J. Appl. Phys., Vol. 69, No. 1, pp. 414-419 (1991).
13. N. Setter and L.E. Cross, J.Appl. Phys. 51, 4356 (1980)
14. http://www.fujicera.co.jp
15. http://www.morganelectroceramics.nl/
16. M. Dawber and J. F. Scott, “A model for fatigue in ferroelectric perovskite thin films”,Appl. Phys. Lett., 76, 1060(2000).
17. J. Lee, S. Esayan, A. Safari and R. Ramesh, “Effect of ultraviolet light on fatigue of lead zirconate titanate thin-film capacitors”,Appl. Phys. Lett., 65(2), 254(1994).
18. Wuyi Pan, Cheng-Feng Yue and OgusnTosyal, “fatigue of ferroelectric polarization and electric field induced strain in lead lanthanum zirconate titanate ceramics”, J. Am. Ceram. Soc., 75(6), 1534(1992).
19. Sarita Thakoor, “Enhanced fatigue and retention in ferroelectric thin-film memory capacitors by post-top-electrode anneal tretment”, J. Appl. Phys., 75(10), 5409(1994).
20. P. C. Joshi and S. B. Krupanidhi, “Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin films”, Appl. Phys. Lett., 62(16), 1928(1993).
21. 侯春樹, “鈦酸鍶鉛鐵電陶瓷材料疲勞機制之研究”, 國立台灣科技大學博士論文. (2001)
22. T. Mihara, H. Watanabe and Carlos A. Paz de Araujo, “characteristic change due to polarization fatigue of sol-gel ferroelectric Pb(Zr0.4Ti0.6)O3 thin film capacitors”, Jpn. J. Appl. PHYS., 33, 5281(1994).
23. B.Jaffe, R.W.Cook and H.Jaffe “Piezoelectric Ceramics”, Academic Press
24. J.H.Liao, S.Y.Cheng and C.N.Wang, Influences for the Temperature Characteristic of Piezoelectric Preperties, to be published in Ferroelectrics (1990)
25. R.C.Buchanan, Ceramic Matericals for Electronics, Marcel Dekker, Inc.,
26. L.M.Levinson, Electronic Ceramics, Marcel Dekker., Inc., 1988
27. M.Takehashi, Space Charge Effect in Lead Zirconate Titanate Ceramics Caused by the addition of Impurities, Jap. J.Appl,Phys., 9 (10) pp. 1236-1264 (1970)
28. S. E. Park and T. R. Shrout,” Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystal,” J. Appl. Phys., Vol. 82, No. 4, pp. 1804-1811(1997).
29. T. Takenaka, A. S. Bhalla and L. E. Cross,” Dielectric, Piezoelectric, and pyroelectric Properties of Lead Zirconate-Lead Zinc Niobate Ceramics”, J. Am. Ceram. Soc.-Discussions and Note, Vol. 72, No. 6, pp. 1016-1023(1989).
30. J. Kuwata, K. Uchino and S. Nomura,” Diffude Phase Transition in Lead Zinc Niobate,” Ferroelectrics, Vol. 22, pp.863-867(1979).
31. Wenyi Zhu and L.Eric Cross “Direct evidence of ferroelastic participation in 180° polarization switching and fatigue for 111 oriented rhombohedral ferroelectric 0.955 Pb(Zn1/3Nb2/3):0.045 PbTiO3 single crystals”, Appl. Phys. Lett., 84(13), 2388(2004)
32. Huiqing Fan, Gun-Tae Park, Jong-jin Choi, and Hyoun-Ee Kim“Effect of annealing atmosphere on domain structures and electromechanical properties of Pb(Zn1/3Nb2/3)O3-based ceramics”, Appl. Phys. Lett., 79(11), 1658(2001)
33. Y. Matsuo, H. Sasaki, S. Hayakawa, F. Kanamaru and M. Koizumi,” High-Pressure Synthesis of Perovskite-Type Pb(Zn1/3Nb2/3)O3,” J. Am. Ceram. Soc.-Discussions and Note, Vol. 52, No. 9, pp. 516-517(1969).
34. A. Halliyal, U. Kumar, R. E. Newnham and L. E. Cross,” Dielectric and Ferroelectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3- BaTiO3-PbTiO3,” . Am. Ceram. Soc., Vol. 70, No. 2, pp. 119-124(1987).
35. A. Halliyal, U. KuMar, R. E. Newnham and L. E. Cross,” Stabilization of the Perovskite Phase and Dielectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3-BaTiO3”, Am. Ceram. Soc. Bull., Vol. 66, No. 4, pp. 671-676(1987).
36. J. R. Belsick, A. Halliyal, U. KuMar, R. E. Newnham,” Phase Relations and Dielectric Ptoperties of Ceramics in the System Pb(Zn1/3Nb2/3)O3- SrTiO3-PbTiO3,” Am. Ceram. Soc. Bull., Vol. 66, No. 4, pp. 664-667(1987).
37. K. K. Deb, M. D. Hill, R. S. Roth and J. F. Kelly,” Dielectric and Pyroelectric Properties of Doped Lead Zinc Niobate (PZN) Ceramic Materials,” Ceramic Bulletin, Vol. 71, No. 3, pp. 349-354(1992).
38. H. A. Megaw,” Crystal structure of double oxides of the perovskite type,” Proc. Phys. Soc. Vol. 58, pp. 133-152 (1946)
39. R. D. Shannon and C. T. Prewitt, “Structural Crystallography and Crystal Chemistry,” Acta Cryst, Vol. 25, pp. 925-946 (1969).
40. V. M. Goldschmidt, Shrifter Norske Videnskaps-Akad. Oslo 1: Matemot. Naturuid. Klasse, No. 2, (1926).
41. Naoki Wakyia, Nobuo Ishizawa,Kazuo Shinozaki, Nobuyasu Mizutani, “Thermal stability of PZN and consideration of stabilization conditions of perovskite type compounds” Materials Research Bulletin, Vol, 30,NO.9, pp. 1121-1131,(1995)
42. Chen-Liang Li, Chen-Chia Chou and Dah-Shyang Tsai, “Preparation of PZN-BT-PZT ceramics using A-site element sequential mixing columbite method,” J. European Ceram. Soc. 25 (2005)
43. 李振良, “微波燒結鋅鈮鋯鈦酸鉛陶瓷系統之特性及微觀研究”, 國立台灣科技大學博士論文. (2005.)
44. J. K. Lee, S. G. Kang and H. Kim,” Dielectric properties of Pb(Zn1/3Nb2/3)O3 ceramics modified by Ba(Zn1/3Nb2/3)O3 and BaTiO3,” J. Mat. Sci., Vol. 33, pp. 693-698 (1998).
45. S. L. Swartz and T. R. Shrout,” Fabrication of perovskite Lead Magnesium Niobate,” Mater. Res. Bull., Vol. 17, pp. 1245-1250(1982).
46. Q. Jiang, W. CaO and L. E. Cross,” Electric Fatigue in Lead Zirconate Titanate Ceramics”, J. Am. Ceram. Soc., Vol. 77, No. 1, pp. 211-215 (1994).
47. H. Webster, "Effect of PbO deficiencyon the piezoelectric properties of lead zirconate-titanate ceramics," J. Am, Ceram.Soc., ~01.50, pp. 490-491, (1967).
48. D. E. Ir'ittmer etal., "Low-temperature densification of lead zirconate-titanate with vanadium pentoxide additive," J. Am. Ceram. Soc., ~01.64, pp. 485-490, (1981).
49. K.K Rajan and L.C Lim “Particle size dependent x-ray linewidth of rhombohedral phase in Pb(Zn1/3Nb2/3)O3-(6,7)%PbTiO3” , Appl. Phys. Lett., 83(25), 5277(2003)
50. Huiqing Fan, "Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate ," Journal of Applied Physics., Vol. 91, No. 1, (2001).
51. Atkin, R. B. and Fulrath, R. M., Point defects and sintering of lead zirconate-titanate. J. Am. Ceram. Soc., 54, 265–270.(1971)
52. Seung-Ho Lee, Chang-Bun Yoon, Sung-Mi Lee, Hyoun-Ee Kim, “Reaction sintering of lead zinc niobate–lead zirconate titanate ceramics”, Journal of the European Ceramic Society, Vol.26, pp.111–115(2006)
53. Zhdanov, G. C., Solid State Physics, Vol 1. Moscow University Press, Moscow, pp. 184(1961).
54. Liang Li and Chen-Chia Chou, “Microstructures and Electrical Properties of Lead Zinc Niobate-Lead Zirconate Titanate Ceramics using Microwave Sintering,” J. European Ceramic Soc. (2005)
55. W. Y. Pant, S Sunt and B. A. Tuttle,” Electromechanical and Dielectric instability induced by electric field cycling in ferroelectric ceramic actuators,” Smart mater. Struct, Vol. 1, pp. 286-293(1992)
56. S. E. Park and T. R. Shrout,” Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystal,” J. Appl. Phys., Vol. 82, No. 4, pp. 1804-1811(1997).
57. S. Y. Chen, C. M. Wang and S. Y. Cheng,” Role of perovskite PMN in phase formation and electrical properties of high dielectric Pb[(Mgx,Zn1-x)1/3Nb2/3]O3 ceramics,” Materials Chemistry and physics, Vol. 52, pp. 207-213(1998).
58. T. Takenaka, A. S. Bhalla and L. E. Cross,” Dielectric, Piezoelectric, and pyroelectric Properties of Lead Zirconate-Lead Zinc Niobate Ceramics”, J. Am. Ceram. Soc.-Discussions and Note, Vol. 72, No. 6, pp. 1016-1023(1989).
59. D. Wan, J. Xue and J. Wang,” Mechanochemical Synthesis of 0.9[0.6Pb(Zn1/3Nb2/3)O3.0.4Pb(Mg1/3Nb2/3)O3] .0.1PbTiO3,” J. Am. Ceram. Soc., Vol. 83, No. 1, pp. 53-59(2000).
60. B.G. Demczyk, A.G. Khachaturyan and G. Thomas,”On a minimum Grain Size foe Domain Formation in Lanthanum Modified Lead Titanate Ferroelectric Ceramics”, Scr. Metal.,21, 967 (1987).
61. Huiqing Fan, "Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate ," Journal of Applied Physics., Vol. 91, No. 1,(2001).
62. K. Yao, K. Uchino, Y. Xu, S. Dong and L. C. Lim,” Compact piezoelectric stacked actuators for high power applications,” IEEE transactions on ultrasonic, Ferroelectrics, and Frequency Control, Vol. 47, No. 4, pp. 819-825(2000).
63. H. Kawai, Y. Sasaki, T. Inoue, T. Inoi and S. Takahashi,” High power transformer employing piezoelectric ceramics,” Jpn. J. Appl. Phys., Vol. 35 part 1. No. 9B, pp. 5015-5017(1996).
64. W.L. Warren, D. Dimos, B. A.Tuttle,R.D. Nasby and G.E.Pike,”Electronic domain pinning in Pb(Zr,Ti)O3 thin films and its role in fatigue”, Appl.Phys.Lett, 65, 1018(1994).

QR CODE