簡易檢索 / 詳目顯示

研究生: 鄭為鴻
Wei-Hung Cheng
論文名稱: 熱障塗層氣膜孔結構結合火山灰CMAS滲透之熱流固耦合分析
Thermo-fluid-solid coupling analysis of film cooling structure and Volcano CMAS infiltration for thermal barrier coating
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 徐慶琪
Ching-Chi Hsu
黃育熙
Yu-Hsi Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 92
中文關鍵詞: 熱障塗層氣膜孔殘留應力鈣鎂鋁矽酸(CMAS)相變化
外文關鍵詞: Thermal barrier coatings (TBCs), Film cooling, Cooling hole, CMAS
相關次數: 點閱:133下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱障塗層系統(TBCs)中氣膜孔冷卻技術在燃氣輪機葉片或是燃燒室的安全設計中起著重要作用,因為氣膜孔冷卻技術有效地降低了頂層周圍的溫度,然而氣膜孔周圍出現應力集中,縮短了使用壽命。因此,本文的目的是利用熱-流-固耦合分析流場、傳熱和熱應力,建立帶氣膜孔冷卻的熱障塗層三維模型,來預測冷卻階段的危險區域,並提供TBCs中冷卻技術的優化設計。溫度分析和應力分析可以通過不同的氣膜冷卻幾何參數和TBCs設計獲得。在本篇研究的前半段主要是在探討氣膜孔冷卻技術的幾何變化並探討美國專利設計優劣。飛機運行過程在高空中會受到火山灰-鈣-鎂-鋁-矽酸CMAS等化學雜質影響,在高溫中會使這些化學物質滲透TBCs。在後半段我們將具有氣膜孔冷卻技術的TBCs加入了CMAS滲透,使得在降溫的過程中發生相變化並探討降溫後的殘留應力。結果顯示傾角30度之氣膜孔為最佳設計,而類梯形孔洞設計確實會帶來良好的溫度與應力分佈。透過CMAS滲透的分析可以得到當滲透的程度越深時所造成的介面應力也越大,由這樣的模擬結果可以提出良好的設計模型建議。


    The film cooling technology in thermal barrier coating system (TBCs) plays an important role in the safety design of gas turbine blade or combustion chambers. The film cooling technology effectively reduces the temperature around the top surface. However, larger stress concentration would occur around the cooling hole and then shortens the service life of TBCs. Therefore, this article aims to establish a three-dimensional model of the film cooling thermal barrier coating system to analyze flow field, heat transfer and thermal stress and provide the optimal design of the cooling technology in TBCs. Both temperature and stress distribution are evaluated for different geometric parameters and inclined angles of film cooling system. The residual stresses induced by the phase transformation of CMAS (calcium-magnesium- aluminum-silicate) penetration during the cooling process in the TBCs with film cooling technology are also investigated. The results show that the inclined angle 30°of the film cooling system and the trapezoid-like shaped hole design are shown to be an excellent cooling strategy. It is also found that the interfacial stress between the top coat and bond coat becomes larger when the depth of CMAS penetration is deeper. Based on this simulation result, this article provides the optimal design of film cooling technology of TBCs.

    目錄 中文摘要 II ABSTRACT III 致謝 IV 圖/表目錄 7 第一章 緒論 11 1 前言 11 1.1研究規劃 20 第二章 有限元素模擬 23 2.1 幾何 23 2.1.1 邊界條件 25 2.1.2 材料參數 28 2.2氣膜孔 Film cooling 30 2.3 CMAS侵蝕-相變化 32 2.4 Ansys-Fluent 36 2.4.1 Ansys-Fluent計算模擬公式 38 2.4.2 Abaqus 40 2.4.3 Abaqus座標轉換 45 2.5方法 46 2.5收斂性分析 47 第三章 模擬結果 49 3.1有無氣膜孔比較 49 3.1.1文獻比較 51 3.2.2探討傾斜角度幾何設置 53 3.2.3探討傾斜角度模擬結果 54 3.3探討洞口幾何設計 61 3.3.1探討洞口幾何設計模擬結果-CASE1 66 3.3.2探討洞口幾何設計模擬結果-CASE2 72 3.4探討CMAS滲透幾何設置 75 3.4.1探討有無CMAS滲透模擬結果 77 3.4.2探討CMAS滲透模擬結果CASE1 81 3.4.3探討CMAS滲透模擬結果CASE2 85 第四章 結論 89 第五章 未來展望 91 參考文獻 92

    參考文獻

    [1] Clarke, D. R., Oechsner, M., & Padture, N. P. (2012). Thermal-barrier coatings for more efficient gas-turbine engines. MRS bulletin, 37(10), 891-898.
    [2] Gok, M. G., & Goller, G. (2019). State of the art of gadolinium zirconate based thermal barrier coatings: Design, processing and characterization. In Methods for Film Synthesis and Coating Procedures. IntechOpen
    [3] Padture, N. P., Gell, M., & Jordan, E. H. (2002). Thermal barrier coatings for gas-turbine engine applications. Science, 296(5566), 280-284.
    [4] Sundaram, N., & Thole, K. A. (2007). Effects of surface deposition, hole blockage, and thermal barrier coating spallation on vane endwall film cooling.
    [5] Kistenmacher, D. A., Todd Davidson, F., & Bogard, D. G. (2014). Realistic trench film cooling with a thermal barrier coating and deposition. Journal of Turbomachinery, 136(9)
    [6] Zhao, L., & Wang, T. (2014). An experimental study of mist/air film cooling on a flat plate with application to gas turbine airfoils—Part I: heat transfer. Journal of Turbomachinery, 136(7).
    [7] Goldstein, R. J. (1971). Film cooling. In Advances in heat transfer (Vol. 7, pp. 321-379). Elsevier.
    [8] Davidson, F. T., KistenMacher, D. A., & Bogard, D. G. (2014). Film cooling with a thermal barrier coating: round holes, craters, and trenches. Journal of Turbomachinery, 136(4).
    [9] Jiang, J., Wu, D., Wang, W., Zhao, X., Ma, X., Wang, B., & Shi, H. J. (2020). Fracture behavior of TBCs with cooling hole structure under cyclic thermal loadings. Ceramics International, 46(3), 3644-3654.
    [10] Kumar, V., & Balasubramanian, K. (2016). Progress update on failure mechanisms of advanced thermal barrier coatings: A review. Progress in Organic Coatings, 90, 54-82.
    [11] The ash that shut down Europe, Peter Mechnich, DLR MAGEZINE, p.134-134.
    [12] Levi, C. G., Hutchinson, J. W., Vidal-Sétif, M. H., & Johnson, C. A. (2012). Environmental degradation of thermal-barrier coatings by molten deposits. MRS bulletin, 37(10), 932-941.
    [13] MERCER, C., et al. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration. Acta materialia, 2005, 53.4: 1029-1039.
    [14]Yang, L., Yang, T. T., Zhou, Y. C., Wei, Y. G., Wu, R. T., & Wang, N. G. (2016) Acoustic emission monitoring and damage mode discrimination of APS thermal barrier coatings under high temperature CMAS corrosion. Surface and Coatings Technology, 304, 272-282.
    [15] Acharya, S., & Kanani, Y. (2017). Advances in film cooling heat transfer. In Advances in Heat Transfer (Vol. 49, pp. 91-156). Elsevier.
    [16]United States Patent Liang US 8057180B1
    [17] Jiang, J., Cai, Z., Wang, W., & Liu, Y. (2017). Finite element analysis of thermal-mechanical behavior in the thermal barrier coatings with cooling hole structure. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers Digital Collection.
    [18] Jiang, J., Jiang, L., Cai, Z., Wang, W., Zhao, X., Liu, Y., & Cao, Z. (2019). Numerical stress analysis of the TBC-film cooling system under operating conditions considering the effects of thermal gradient and TGO growth. Surface and Coatings Technology, 357, 433-444.
    [19] Wiesner, V. L., Harder, B. J., & Bansal, N. P. (2018). High-temperature interactions of desert sand CMAS glass with yttrium disilicate environmental barrier coating material. Ceramics International, 44(18), 22738-22743.
    [20] Zhang, G., Fan, X., Xu, R., Su, L., & Wang, T. J. (2018). Transient thermal stress due to the penetration of calcium-magnesium-alumino-silicate in EB-PVD thermal barrier coating system. Ceramics International, 44(11), 12655-12663.
    [21] Tseng, S., Chao, C., Zhang, W., & Fan, X. (2021). Microcrack propagation induced by dynamic infiltration of calcium-magnesium-alumino-silicate in columnar structures for thermal barrier coatings. Journal of the Chinese Institute of Engineers, 44(1), 11-21.
    [22] Abdul-Jabbar, N. M., Fernandez, A. N., Jackson, R. W., Park, D., Summers, W. D., & Levi, C. G. (2020). Interactions between zirconia–yttria–tantala thermal barrier oxides and silicate melts. Acta Materialia, 185, 171-180.
    [23] Ganvir, A., Curry, N., Govindarajan, S., & Markocsan, N. (2016). Characterization of thermal barrier coatings produced by various thermal spray techniques using solid powder, suspension, and solution precursor feedstock material. International Journal of Applied Ceramic Technology, 13(2), 324-332.
    [24] Wang, Y., Li, J., Liu, H., & Weng, Y. (2017). Study on thermal resistance performance of 8YSZ thermal barrier coatings. International Journal of Thermal Sciences, 122, 12-25.
    [25] Kodzwa Jr, P. M. (2005). Measurements of film cooling performance in a transonic single passage model. Stanford University.
    [26] Wu, Y., Luo, H., Cai, C., Wang, Y., Zhou, Y., Yang, L., & Zhou, G. (2019). Comparison of CMAS corrosion and sintering induced microstructural characteristics of APS thermal barrier coatings. Journal of materials science & technology, 35(3), 440-447.
    [27] Shan, X., Zou, Z., Gu, L., Yang, L., Guo, F., Zhao, X., & Xiao, P. (2016). Buckling failure in air-plasma sprayed thermal barrier coatings induced by molten silicate attack. Scripta Materialia, 113, 71-74.
    [28] Boissonnet, G., Chalk, C., Nicholls, J., Bonnet, G., & Pedraza, F. (2020). Thermal insulation of CMAS (Calcium-Magnesium-Alumino-Silicates)-attacked plasma-sprayed thermal barrier coatings. Journal of the European Ceramic Society, 40(5), 2042-2049.
    [29] Viazzi, C., Bonino, J. P., Ansart, F., & Barnabé, A. (2008). Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. Journal of Alloys and Compounds, 452(2), 377-383.
    [30] Mostofizadeh, A. R., Adami, M., & Shahdad, M. H. (2018). Multi-objective optimization of 3D film cooling configuration with thermal barrier coating in a high pressure vane based on CFD-ANN-GA loop. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4), 1-15.
    [31] Busso, E. P., Lin, J., Sakurai, S., & Nakayama, M. (2001). A mechanistic study of oxidation-induced degradation in a plasma-sprayed thermal barrier coating system.: Part I: model formulation. Acta materialia, 49(9), 1515-1528.
    [32] Bayraktar, S., & Yilmaz, T. (2008). Two-dimensional numerical investigation of film cooling by a cool jet injected at various angles for different blowing ratios. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(7), 1215-1224.
    [33] Lu, Y., Dhungel, A., Ekkad, S. V., & Bunker, R. S. (2009). Film cooling measurements for cratered cylindrical inclined holes. Journal of turbomachinery, 131(1).
    [34] Kistenmacher, D. A., Davidson, F. T., & Bogard, D. G. (2013, June). Realistic trench film cooling with a thermal barrier coating and deposition. In Turbo Expo: Power for Land, Sea, and Air (Vol. 55157, p. V03BT13A057). American Society of Mechanical Engineers.
    [35] Tseng, S. C., Chao, C. K., Chen, F. M., & Chiu, W. C. (2020). Interfacial stresses of a coated polygonal hole subject to a point heat source. Journal of Thermal Stresses, 43(12), 1487-1512.

    QR CODE