簡易檢索 / 詳目顯示

研究生: 劉正偉
Cheng-wei Liu
論文名稱: 具數位自我校正之寬頻高精度數位脈衝寬度調變器
Wide Operating Frequency Range and High Accuracy Digital Pulse Width Modulator with Digital Self-Calibration
指導教授: 陳伯奇
Poki Chen
口試委員: 許炳堅
Bing Sheu
李鎮宜
Chen-Yi Lee
鄒應嶼
Ying-Yu Tzou
羅有綱
Yu-Kang Lo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 數位脈衝寬度調變技術(Digital Pulse Width Modulation,DPWM)LED驅動電路脈衝寬度縮減/放大技術責任週期高精度數位自我校正性能因數(Figure of Merit,FOM)
外文關鍵詞: digital pulse width modulator(DPWM), pulse stretching, high accurary, digital self-calibration, Figure of Merit(FOM)
相關次數: 點閱:303下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數位脈衝寬度調變技術(Digital Pulse Width Modulation,DPWM)目前運用的範疇有電源管理IC應用、控制馬達轉速及LED驅動電路採用DPWM做為LED趨動電路,近來亦有文獻提出以DPWM概念實現Class-D放大器等電路,故我們更期待未來DPWM之應用愈來愈趨廣泛,可以證明本論文所提出之DPWM的優越價值性。
    在參閱DPWM相關文獻後,本論文提出採用脈衝縮減緩衝器式DPWM與先放大再縮減式DPWM,其使用脈衝寬度縮減/放大技術概念實現DPWM,係以簡單創意概念,達到極佳效能。
    只採用脈衝縮減緩衝器式DPWM使用脈衝縮減緩衝器組成脈衝縮減延遲線,搭配多工器選擇所需責任週期(Duty Cycle)輸出,在解析度高達12位元時面積小,功耗低,又具有數位自我校正功能,以TSMC 0.18μm 1P6M製程實現電路,晶片核心電路面積0.751mm2,經過量測其操作頻率為97kHz∼2MHz超寬範圍,功耗為1.249mW,INL介於-0.41∼+0.43LSB之間,更可證明其線性度表現極佳,引用數位類比轉換器(Digital-to-Analog Converter, DAC)設計之性能因數(Figure of Merit,FOM)概念來判斷本DPWM之高精準度與寬範圍數位自我校正功能優越性,其FOM高達7626.57,遠超過目前其他DPWM設計。


    Two wide operation frequency range and high accurary digital pulse width modulators (DPWM) with digital self-calibration are explored in this thesis. Their most popular applications are the DC-DC converter, LED driver, motor control and class-D amplifier.
    High performance 12-bits digital pulse width modulator (DPWM) based on pulse shrinking delay line with extremely first simple structure is proposed in this thesis. By digitally calibrating the amount of delay line pulse shrinking, it can achieve 97 kHz ~ 2 MHz wide range operation frequency and 1.249 mW low power consumption at 1 MHz. Fabricated in a TSMC 0.18-μm 1P6M standard CMOS process, the chip size is 0.751 mm2 only. The duty cycle output integral nonlinearity is measured as excellent as -0.41 ~ +0.43 LSB. With an FOM similar to digital-to-analog Converter’s(DAC), the proposed circuit owns 7626.57, the best than ever number to ensure its superiority.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 VII 第一章 緒論 - 1 - 1-1 研究背景 - 1 - 1-2 研究動機 - 3 - 1-2.1 數位控制脈衝寬度調變器 - 4 - 1-2.2 選擇數位控制的理由 - 5 - 1-3 系統介紹 - 7 - 1-4 論文架構 - 8 - 第二章 脈衝寬度調變電路 - 9 - 2-1 脈衝寬度調變技術介紹 - 9 - 2-2 傳統類比脈衝寬度調變電路 - 11 - 2-3 計數器型數位脈衝寬度調變電路 - 12 - 2-4 延遲線型數位脈衝寬度調變電路 - 14 - 2-5 脈衝縮減延遲線型數位脈衝寬度調變電路 - 15 - 2-6 脈衝寬度調變電路架構之選擇 - 17 - 第三章 採用脈衝寬度縮減/放大 技術之脈衝寬度調變電路 - 18 - 3-1 脈衝寬度縮減/放大緩衝器 - 18 - 3-1.1 脈衝寬度縮減/放大緩衝器 - 19 - 3-1.2 脈衝寬度縮減緩衝器 - 21 - 3-1.3 脈衝寬度放大緩衝器 - 22 - 3-2 採用脈衝寬度縮減/放大緩衝器式DPWM - 23 - 3-2.1 採用脈衝寬度縮減/放大緩衝器式DPWM - 24 - 3-2.2 只採用脈衝寬度放大緩衝器式DPWM - 25 - 3-2.3 只採用脈衝寬度縮減緩衝器式DPWM - 26 - 3-2.4 共用反相器之脈衝縮減式DPWM - 28 - 3-3 採用脈衝縮減/放大緩衝器式DPWM之比較 - 29 - 第四章 具高精準度與寬操作範圍之電路實現方法 - 30 - 4-1 採用脈衝寬度縮減緩衝器式DPWM穩定度分析 - 30 - 4-1.1 直流分析 - 32 - 4-1.2 交流分析 - 36 - 4-2 數位式自我校正控制偏壓產生電路 - 39 - 4-2.1 偏壓產生器(Bias Voltage Generator) - 41 - 4-2.2 循序漸近暫存器 - 43 - 4-3 多工器(Multiplexer) - 46 - 4-3.1 數位式多工器 - 46 - 4-3.2 類比式多工器(由位址解碼器搭配類比開關組成) - 47 - 4-4 Dead-Time控制電路 - 48 - 第五章 電路設計模擬 - 50 - 5-1 設計流程 - 50 - 5-2 脈衝寬度縮減緩衝器式DPWM之模擬 - 52 - 5-2.1 脈衝寬度縮減緩衝器之模擬 - 52 - 5-2.1.1 電壓變異模擬 - 54 - 5-2.1.2 溫度變異模擬 - 55 - 5-2.1.3 製程變異模擬 - 56 - 5-2.2 脈衝寬度縮減緩衝器式DPWM之數位自我校正模擬 - 59 - 第六章 晶片佈局與量測結果 - 63 - 6-1 晶片佈局 - 63 - 6-1.1 晶片佈局考量 - 63 - 6-1.2 只採用脈衝寬度縮減緩衝器式DPWM之佈局 - 70 - 6-2 晶片量測 - 72 - 6-2.1 量測儀器 - 72 - 6-2.2 量測環境的建立 - 74 - 6-2.2.1 參考電壓產生電路作法: - 75 - 6-2.2.2 FPGA協助IC量測: - 77 - 6-2.3 量測結果 - 78 - 第七章 結 論 - 91 - 7-1 晶片效能 - 91 - 7-2 未來展望 - 94 - 參 考 文 獻 - 95 - 研究參與競賽與論文發表成果 - 98 -

    [1]Wei-Hsu Chang, Hung-Shou Nien, Chih-Hung Chen, “A Digital Boost Converter to Drive White LEDs,” IEEE APEC Conf., pp.558-564, 2008.
    [2]B.J. Patclla, A. Prodic, A. Zireger, D. Maksimovic, “High-Frequency Digital PWM Controller IC for DC-DC Converters, ” IEEE Transactions on Power Electronics., Vol. 18, No. 1., pp.438-446, January. 2003.
    [3]X.Wang, X. Zhou, J. Park, and A. Q. Huang, “Design and implementation of a 9-bit 8 MHz DPWM with AMI06 process,” IEEE APEC Conf., pp. 540–545, 2009.
    [4]X.Wang, X. Zhou, J. Park, R. Guo and A. Q. Huang, “Analysis of Process-Dependent Maximal Switching Frequency, Choke Effect, and Its Relaxed Solution in High-Resolution DPWM,” IEEE Transactions on Power Electronics., Vol. 25, No. 1., pp.152-157, January. 2010.
    [5]A. Syed, E. Ahmed, E. Alarcón, and D. Maksimović, “Digital Pulse Width Modulator Architectures,” IEEE PESC., June. 2004.
    [6]S. Bibian, and H. Jin, “High Performance Predictive Dead-beat Digital Controller for DC Power Supplies,” IEEE Trans. on Power Electron., vol.17, no. 3, pp. 420-427, May. 2002.
    [7]A. Prodic, D. Maksimovic, and R. W. Erickson, “Digital Controller Chip Set for Isolated DC Power Supplies,” IEEE APEC Conf., pp. 866-872, 2003.
    [8]W. Zhang, G. Feng, Y. Liu, and B. Wu, “A Digital Power Factor Correction (PFC) Control Strategy Optimized for DSP,” IEEE Trans. on Power Electronics, vol. 19, no. 6, pp. 1474-1485, Nov. 2004.
    [9]X. Zhou, “Low-Voltage High-Efficiency Fast-Transient Voltage Regulator Module, ” VPI & SU Ph.D Thesis, 1999.
    [10]J. Xiao, A. V. Peterchev, and S. R. Sanders, “Architecture and IC Implementation of A Digital VRM Controller,” IEEE Trans. on Power Electronics, vol. 18, no.1, pp. 356-364, January. 2003.
    [11]A. P. Dancy, R. Amirtharajah, and A. P. Chandrakasan, “High-Efficiency Multiple-Output DC-DC Conversion Far Low-Voltage Systems,” IEEE Trans. on VLSI Systems, vol. 8, no.3, June. 2000.
    [12]G. Y. Wei, and M. Horowitz, “A Low Power Switching Power Supply for Self-Clocked Systems,” ISLPED, pp.313 -317, 1996.
    [13]A. P. Dancy, and A. P. Chandrakasan, ”Ultra Low Power Control Circuits for PWM Converters, ” IEEE PESC, pp. 21-27, 1997.
    [14]J. Goodman, A. P. Dancy, and A. P. Chandrakasan, “An Energy/Security Scalable Encryption Processor Using an Embedded Variable Voltage DC/DC Converter,” IEEE JSSC, vol. 33, no. 11, pp. 1799, Nov. 1998.
    [15]H. McDermott, “A Programmable Sound Processor for Advanced Hearing Aid Research,” IEEE Trans. on Rehabilitation Engineering, vol. 6, no. 1, pp. 53, March. 1998.
    [16]B. H. Gwee, J. S. Chang, and H. Li, “A micro-power low-distortion digital pulse width modulator for a digital class D amplifier,” IEEE Transactions on Circuits and Systems – II, vol. 49, no. 4, pp.245, April. 2002.
    [17]E. O. Malley, and K. Rinne, “A Programmable Digital Pulse Width Modulator Providing Versatile Pulse Patterns and Supporting Switching Frequencies Beyond 15MHz,” IEEE APEC Conf., pp. 53-59, 2004.
    [18]H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of quantization effects in digitally controlled DC–DC converters,” IEEE Trans.Power Electron., vol. 22, no. 1, pp. 208–215, January. 2007.
    [19]A. M. Wu, J. Xiao, D. Markovic´, and S. R. Sanders, “Digital PWM control: Application in voltage regulator modules,” in Proc. IEEE PESC., pp. 77–83, 1999.
    [20]S. Bae, H. Chi, Y. Sohn, H. Park, “A VCDL-Based 6-760-MHZ Dual-Loop DLL With Infinite Phase-Shift Capability and Adaptive-Bandwidth Scheme,” IEEE J. Solid-State Circuits, vol. 40, pp.1119-1129, May. 2005.
    [21]O. Trescases, G.Wei, and W. T. Ng, “A segmented digital pulse width modulator with self-calibration for low-power SMPS,” IEEE EDSSC, pp. 367–370, 2005.
    [22]A. Tajalli, S. Mehrmanesh and M. Atarodi, “A duty cycle control circuit for high speed applications”, IEEE ISCAS, pp. 781–784, 2004.
    [23]A. Djemouai, M. Sawan, and M. Slamani, “New CMOS Integrated Pulse Width Modulator for Voltage Conversion Application,” IEEE ICECS, pp.116-119, 2000.
    [24]A. F. Rad, W. Dally, H. T. Ng, A. Senthinathan, M. J. E. Lee, R. Rathi, and J. Poulton, “A Low-Power Multiplying DLL for Law-Jitter Multi Gigahertz Clock Generation in Highly Integrated Digital Chips,” IEEE JSSC, vol. 37, no. 12, Dec. 2002.
    [25]A. Syed, “Digital Pulse Width Modulators Architectures and Feed-Forward Compensation,” M.S. Thesis, Department of Electrical and Computer Engineering, University of Colorado at Boulder, May 2004.
    [26]A. Syed, E. Ahmed, and D. Maksimovic, “Digital PWM Controller with Feed-Forward Compensation,” IEEE APEC, 2004.
    [27]H. Peng, A. Prodic, E. Alarcon, and D. Maksimovic, “Modeling of Quantization Effects in Digitally Controlled DC-DC Converters,” IEEE PESC, 2004.
    [28]Poki Chen, Tuo-Kuang Chen, Hsiao-Tzu Hu,Yu-Han Peng and Yi-Jin Chen, “A Digital Pulse Width Modulator Based on Pulse Shrinking Mechanism,” IEEE PEDS, No. 433, Nov. 2009.
    [29]Behzad Razavi, Design of Analog CMOS Integrated Circuit, International ed., New York: McGraw-Hill, pp. 549-571, 2001.
    [30]蕭培墉、吳孟賢,Hspice 積體電路設計分析與模擬導論,台灣東華書局股份有限公司,台北,Jan. 2005.
    [31]張智星,MATLAB 程式設計與應用,全華圖書股份有限公司,台北,Feb. 2000.
    [32]A Abrial, J Bouvier, J. Fournier, P. Senn and M. Veillard. “A 27-MHz Digital-to-Analog Video Processor”, IEEE Journal of Solid-State Circuits, Vol. 23, pp. 1358-1369, December. 1988.
    [33]Robert H. Walden, “Analog-to-digital converter survey and analysis,” IEEE Journal on Selected Areas in Communication, Vol. 17 No. 4, pp. 539-550, April. 1999.

    無法下載圖示 全文公開日期 2016/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE