簡易檢索 / 詳目顯示

研究生: 白潔茹
Jie-Ru Bai
論文名稱: 以改良式分流器實現之高精度十位元二進位電流導向式數位至類比轉換器
A High Accuracy 10-Bit Binary-Weighted Current-Steering D/A Converter Realized with Enhanced Current Splitter
指導教授: 陳伯奇
Poki Chen
口試委員: 鍾勇輝
Yung-Hui Chung
沈中安
Chung-An Shen
黃育賢
Yuh-Shyan Hwang
陳景然
Ching-Jan Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 電流導向式數位至類比轉換器隨機不匹配系統性不匹配分流器
外文關鍵詞: Current-steering digital-to-analog converter, Systematic mismatch, Random mismatch, Current splitter
相關次數: 點閱:337下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計一個十位元電流導向式之數位至類比轉換器,該轉換器的主要實現架構有三種,分別為單位電流源矩陣、二進位權重式與分段式架構。而本論文採用二進位權重電流導向式架構來實現,考量電路會受到操作電壓、短通道調變效應(Short-Channel Effect)與佈局不匹配等影響,導致電流源陣列之輸出電流難以精準設計,我們提出一種全新的複製-分割分流器架構,只需專注匹配各個位元的電流源,並藉由二階梯度消除(2nd Order Gradient Cancellation)與三階梯度消除(3rd Order Gradient Cancellation)的佈局技巧,抑制系統性不匹配(Systematic Mismatch)的影響,以獲得高精度的電流輸出。
    此數位至類比轉換器使用TSMC 90nm 1P9M製程來實現,操作於1.2V的供應電壓下,積分非線性誤差(INL)介於+0.04 LSB ~ -0.03 LSB,微分非線性誤差(DNL)介於+0.07 LSB ~ -0.02 LSB。當輸入頻率為499.76MHz時,無突波動態範圍(SFDR)為61dB,功率消耗為24 mW,核心晶片面積為0.25 mm2。


    A 10-bit 1GS/s digital-to-analog converter is prosed and implemented in this thesis. Conventionally, there are three major architectures for implementation: Unary Current Source Matrix, Binary-Weighted and Segmented Current-Steering DAC. The Binary-Weighted Current-Steering DAC is adopted in this thesis to reduce the realization complexity. According to the limitation of low supply voltage and short-channel effect, it is difficult to design an accurate enough binary-weighted current source array. A newly-proposed current-splitter architecture along with the 2nd to 3rd order gradient cancellation layout is utilized to ensure the required accuracy and ease the circuit design.
    The DAC is implemented in a TSMC 90 nm 1P9M CMOS technology powered with 1.2V supply. The integral nonlinearity (INL) and differential nonlinearity (DNL) are simulated to be +0.04 ~ -0.03 LSB and +0.07~ -0.02 LSB respectively. With 499.76MHz input sine wave, the spurios free dynamic range (SFDR) is 61 dB. The power consumption is 24 mW and the active area is merely 0.25 mm2.

    摘 要 I Abstract II 誌 謝 III 目 錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1-1 研究背景與動機 1 1-2 相關研究發展 2 1-3 論文架構 3 第2章 數位至類比轉換器的基本原理 4 2-1 理想數位至類比轉換器 4 2-2 理想數位至類比轉換器特性 5 2-3 數位至類比轉換器之規格參數 6 2-3-1 靜態參數 6 2-3-2 動態參數 12 2-4 數位至類比轉換器架構簡介 17 2-4-1 解碼器數位至類比轉換器架構 18 2-4-2 二進位權重式數位至類比轉換器架構 20 2-4-3 溫度計碼式數位至類比轉換器架構 24 2-4-4 混合式數位至類比轉換器架構 26 2-5 結論 29 第3章 數位至類比轉換器之設計考量 30 3-1 靜態誤差 30 3-1-1 電流源電晶體不匹配 30 3-1-2 電流源有限輸出阻抗分析 36 3-2 動態誤差 39 3-2-1 電流源開關電晶體的非理想效應 40 3-2-2 數位訊號不同步 44 3-2-3 電流源頻寬分析 44 3-3 結論 46 第4章 數位至類比轉換器之電路設計與實現 47 4-1 電流源架構介紹 48 4-1-1 電流源設計 49 4-1-2 改良後之電流源架構 51 4-1-3 電流鏡架構 52 4-1-4 單位電流源尺寸選擇 56 4-2 去突波栓鎖電路(Deglitch & Latch Circuit) 62 4-3 偏壓電路(Bias Circuit) 65 4-3-1 帶差參考電壓電路 66 4-4 晶片佈局考量 69 4-4-1 電流源佈局 72 第5章 電路模擬結果與未來展望 74 5-1 晶片佈局圖 74 5-2 靜態模擬結果 75 5-2-1 前模擬 (Pre-Simulation) 75 5-2-2 後模擬 (Post-Simulation) 76 5-3 動態模擬結果 77 5-3-1 前模擬 (Pre-Simulation) 78 5-3-2 後模擬 (Post-Simulation) 80 5-4 晶片效能比較 83 5-5 結論與未來展望 84 參考文獻 85

    [1]Fang-Ting Chou, Zong-Yi Chen and Chung-Chih Hung, “A 10-bit 250MS/s low-glitch binary-weighted digital-to-analog converter,” IEEE International System-on-Chip Conference (SOCC), 2014 27th, pp. 231,235, 2-5 Sep. 2014.
    [2]A. Hastings, “The art of analog layout,” Prentice Hall, 2006.
    [3]劉沛潔,「通訊系統中數位類比轉換器之電路設計」,晶片系統002期.
    [4]A. v. d. Bosch, M. A. F. Borremans, M. S. J. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 315-324, 2001.
    [5]S. –C. Yi, “An-8-bit-current-steering-digital-to-analog-converter,” Inter. J. of Electronics and Communications, vol. 66, no. 5, pp. 433-437, May 2012.
    [6]F. Chou, C. Hung, “Glitch Energy Reduction and SFDR Enhancement Techniques for Low-Power Binary-Weighted Current-Steering DAC,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24-6, pp: 2407-2411, 2016.
    [7]B. Razavi, “Principles of Data Conversion System Design,” New York: Wiley-IEEE Press, 1995.
    [8]D. Johns and K. W. Martin, “Analog Integrated Circuit Design,” New York: John Wiley & Sons, 1997.
    [9]L. Fang-Jie, Y. Yong-Sheng, L. Shang-Quan, and G. Ming-Lun, “Current switch driver and current source designs for high-speed current-steering DAC,” in 2008 2nd International Conference on Anti-counterfeiting, Security and Identification, pp. 364-367, 2008.
    [10]S. H. Yang, K. S. Lee, S. Kim, and Y. M. Lee, “Charge-redistribution DAC with double bit processing in single capacitor,” Electronics Letters, vol. 47, pp. 312-313, 2011.
    [11]Chi-Hung Lin and K. Bult, “A 10-b, 500-MSample/s CMOS DAC in 0.6 mm2,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1948-1958, Dec. 1998.
    [12]M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching Properties of MOS Transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, Oct. 1989.
    [13]A. Van den Bosch, M. Steyaert, and W. Sansen, “An accurate statistical yield model for CMOS current-steering D/A converter,” IEEE Int. Symp. on Circuit and Systems (SCAS) vol. 4, pp. IV.105-IV.108, May 2000.
    [14]K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, “Characterisation and Modeling of Mismatch in MOS Transistors for Precision Analog Design,” IEEE J. Solid-State Circuits, vol.21, no. 6, pp. 1057-1066, Dec. 1986.
    [15]J. Bastos, M. S. J. Steyaert, A. Pergoot, and W. M. Sansen, “Influence of Die Attachment on MOS Transistor Matching,” IEEE Trans. on Semiconductor Manufacturing, vol. 10, no. 2, pp. 209-218, May 1997.
    [16]Xin Dai, Chengming He, Hanqing Xing, Degang Chen, and R. Geiger, “An Nth order Central Symmetrical Layout Pattern for Nonlinear Gradients Cancellation,” IEEE Int. Symp. on Circuit and Systems (ISCAS), pp. 4835-4838, May 2005.
    [17]G.A. M. Van Der Plas, J. Vandenbussche, W. Sansen, M. S. J. Steyaert, and G. G. E. Gielen, “A 14-bit intrinsic accuracy Q2 random walk CMOS DAC,” IEEE J. Solid-State Circuits, vol. 34, no. 12, pp. 1708-1718, Dec. 1999.
    [18]Y. Nakamura, T. Miki, A. Maeda, H. Kondoh, and N. Yazawa, “A 10-b 70-MS/s CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 637-642, Apr. 1991.
    [19]A. Van den Bosch, M. Steyaert, and W. Sansen, “SFDR-bandwidth limitations for high-speed high-resolution current-steering CMOS D/A converters,” IEEE Int. Conf. Electronics on Circuits and Systems (ICECS), vol. 3, pp. 1193-1196, Sept. 1999.
    [20]R. J. Baker and Institute of Electrical and Electronics Engineers., “CMOS circuit design, layout, and simulation,” 3nd ed. New York: IEEE Press, 2010.
    [21]J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE Journal of Solid-State Circuits, vol. 33, pp. 1959-1969, 1998.
    [22]B. Razavi, “Design of analog CMOS integrated circuits,” Mc Graw-Hill College, 2002.
    [23]M. Albiol, J. L. Gonzalez, and E. Alarcon, “Mismatch and dynamic modeling of current sources in current-steering CMOS D/A converters: an extended design procedure,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, pp. 159-169, 2004.
    [24]蔡宗彥(2006)。《A 12-bit 500-MSamples/s Current-steering CMOS D/A Converter》。交通大學碩士論文,新竹市。
    [25]P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1212-1224, 2005.
    [26]K. O. Sullivan, C. Gorman, M. Hennessy, and V. Callaghan, “A 12-bit 320-MSample/s Current-Steering CMOS D/A Converter in 0.44 mm2,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 1064-1072, 2004.
    [27]K. Doris, A. van Roermund, D. Leenaerts, “WIDE-BANDWIDTH HIGH DYNAMIC RANGE D/A CONVERTERS,” Springer, 2006.
    [28]曾南雄,「無外部電容的CMOS低壓差線性穩壓器」,國立交通大學電機學院IC設計產業研發碩士論文,2007年
    [29]D. F. Hilbiber, “A new semiconductor voltage standard,” ISSCC Dig. of Tech. Papers, vol. 7, pp. 32-33, 1964.
    [30]R. Widlar, “New developments in IC voltage regulators,” IEEE International Solid-State Circuits Conference, pp. 158-159, Feb. 1970.
    [31]K. E. Kuijk, “A precision reference voltage source,” IEEE Journal of Solid-State Circuits, vol. 8, no. 3, pp. 222-226, Jun. 1973.
    [32]C. J. B. Fayomi, “Sub 1 V CMOS bandgap reference design techniques: a survey,” Analog Integrated Circuits and Signal Processing, vol. 62, pp. 141-157, 2010.
    [33]P. E. Allen and D. R. Holberg, “CMOS analog circuit design,” 2nd ed. New York: Oxford University Press, 2002.
    [34]T. Miki, Y. Nakamura, M. Nakaya, S. Asai, Y. Akasaka, and Y. Horiba, “An 80-MHz 8-bit CMOS D/A converter, ” IEEE J. Solid-State Circuits, vol. 21, no. 6, pp. 983-988, Dec. 1986.
    [35]Yonghua Cong, and R. L. Geiger, “Switching sequence optimization for gradient error compensation in thermometer-decoded DAC arrays, ” IEEE Trans. on Circuit and Systems II, vol. 47, no. 7, pp. 585-595, Jul. 2000.
    [36]C. H. Yu, H. Ching-Hsuan, S. Tim-Kuei, and C. Wen-Tzao, “A 90nm 10-bit 1GS/s current-steering DAC with 1-V supply voltage,” in VLSI Design, Automation and Test, 2008. VLSI-DAT 2008. IEEE International Symposium on, pp. 255-258, 2008.
    [37]W. S. Cheng, M. H. Hsieh, S. H. Hung, S. Y. Hung, and C. C. P. Chen, “A 10-bit current-steering DAC for HomePlug AV2 powerline communication system in 90nm CMOS,” in 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), pp. 2034-2037, 2013.
    [38]N. Pal, P. Nandi, R. Biswas, and A. G. Katakwar, "Placement-Based Nonlinearity Reduction Technique for Differential Current-Steering DAC," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 24, pp. 233-242, 2016.
    [39]K. Bult and G. J. G. M. Geelen, “A fast-settling CMOS op amp for SC circuits with 90-dB DC gain,” IEEE Journal of Solid-State Circuits, vol. 25, pp. 1379-1384, 1990.
    [40]L. Lei and R. Jun Yan, “An 8-bit 700Ms/s current-steering DAC,” in Solid-State and Integrated-Circuit Technology (ICSICT), 9th International Conference on, pp. 1925-1928, 2008.
    [41]W.-T. Lin and T.-H. Kuo, “A compact dynamic-performance-improved current-steering DAC with random rotation-based binary-weighted selection,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444–453, Feb. 2012.
    [42]W.-T. Lin, H.-Y. Huang, and T.-H. Kuo, “A 12-bit 40 nm DAC achieving SFDR 70 dB at 1.6 GS/s and IMD 61 dB at 2.8 GS/s with DEMDRZ technique,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 708–717, Mar. 2014.

    無法下載圖示 全文公開日期 2023/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE