簡易檢索 / 詳目顯示

研究生: 劉雲夫
Yun-Fu Liu
論文名稱: 視覺之谷:影像處理相關研究改良之建模、量化、補償觀點與思維
The Valley of Vision: Perspectives and Thoughts of Modeling, Quantizing, and Compensating for Image Processing Improvement Related Studies
指導教授: 郭景明
Jing-ming Guo
口試委員: 李建德
Jiann-Der Lee
楊家輝
Jia-hui Yang
林維暘
Wei-yang Lin
陳俊宏
Chun-Hung Chen
李佩君
Pei-jun Li
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 295
中文關鍵詞: 視覺半色調浮水印資訊隱藏影像強化
外文關鍵詞: Vision, halftoning, watermarking, data hiding, image enhancement
相關次數: 點閱:376下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過人眼所接收到之資訊並非完美反映出真實情況,取而代之的,是為根據人眼之「喜好」所「修正」之接收結果。高度相關於人眼特性的數位影像處理領域,如果根據其特性取得受到人眼偏愛的、而非僅忠實呈現原始資訊的成果,將亦同等效於取得更佳的使用者感受。在本論文中共涉及到三項主題,包含半色調技術(halftoning)、浮水印技術(watermarking)、以及影像對比強化技術(image contrast enhancement)之共六項子獨立研究課題。此些課題之改良多少涉及到利用前述之視覺非完美特性,並配合諸如建模、量化、補償等方式進行效能上之強化。對於其中兩項半色調技術方面之研究,皆主要於半色調技術中之dot diffusion (DD)技術進行針對性改良,分別稱為co-optimized DD以及near-aperiodic DD (NADD),且其皆巧妙利用到人眼之低通特性作為視覺還原原始資訊的主要中心思維。另外,所屬於浮水印技術之三項研究項目,分別以半色調或block truncation coding (BTC)壓縮後之影像作為表現型。此對應之成果分別稱為overall minimal-error searching (OMES)、complementary hiding error-diffused BTC (CHEDBTC)、以及majority-parity-guidance EDBTC (MPG-EDBTC))等。本三項技術分別在維持視覺上對於原始訊號之相似感受的同時,進行對於隱藏資料的容納量與強健性等等訴求之考量。對於影像對比強化方面,傳統技術所附帶之過度強化所造成之視覺感受劣勢,受到所提出技術parametric-oriented histogram equalization (POHE)以及corrected POHE (CPOHE; 此另特別強化POHE之對比特性)之近似以抑制,同時大幅降低所需求之計算複雜度。本論文提供之成果,預計可應用至印刷產業、隱藏資料傳遞及版權保護等相關訴求、以及近年熱門的圖像識別與電腦視覺等類似之應用科學領域。


    The imperfect information received from human eyes reflects the practical situation as known; instead, the perception is modified by personal “tendency.” Digital image processing highly relies on human eyes’ property, if a resultant involves this consideration or thought, even though it is dissimilar to its source from a signal similarity point of view, a better perception quality is still available by the prospective viewers. This dissertation includes three subscopes under this image processing discipline: halftoning, watermarking, and image contrast enhancement, and moreover, totally six individual research works are related. In fact, these works more or less utilize the aforementioned imperfect feature of human eyes for reaching the purposes of giving some further improvements by thoughts of modeling, quantizing, and compensating. Among these, two of the six works, namely co-optimized dot diffusion (DD) and near-aperiodic DD (NADD), attempt improving the printed dot distribution of the DD halftoning technique for yielding a higher visual quality by exploiting the low-pass property of human visual system. Furthermore, three of the six works, namely overall minimal-error searching (OMES), complementary hiding error-diffused block truncation coding (CHEDBTC), and majority-parity-guidance EDBTC (MPG-EDBTC)), consider either halftone patterns or the BTC compressed images as the phenotype of the results after their watermarking processes. These methods lay on ground of great visual marked image quality to reach either high data capacity or robustness as their purposes. For the last contrast enhancement subscope the parametric-oriented histogram equalization (POHE), it is proposed to greatly reduce the complexity as well as ease the artifact of over enhancing induced by the former local methods. In addition, a modified form of the POHE named correct POHE (CPOHE) is also presented for yielding a higher contrast effect by sacrificing somewhat processing efficiency. Overall, these six efforts are able to be potentially applied on printing industry, the appeals of secret data transmission and copyright protection, photo editing, or the most attractive subjects of pattern recognition, computer vision in recent years.

    CHAPTER 1 INTRODUCTION 1 1.1. Motivation 1 1.2. Contributions 4 1.3. Organization 18 CHAPTER 2 HALFTONING 20 2.1. Background and Former Researches 21 2.1.1. Direct binary search 22 2.1.2. Error diffusion 27 2.1.3. Dot diffusion 29 2.1.4. Ordered dithering 34 2.2. Improved Dot Diffusion by Diffused Matrix and Class Matrix Co-optimization 36 2.2.1. Performance evaluation 36 2.2.2. Diffused weighting and class matrix co-optimization 38 2.2.3. Experimental results 43 2.2.4. Preliminary summary 57 2.3. New Class Tiling Design for Dot-Diffused Halftoning 59 2.3.1. Optimized near-aperiodic dot diffusion 59 2.3.1.1. Class tiling rearrangement 61 2.3.1.2. Optimization for the CM and DM 67 2.3.2. Experimental results 71 2.3.3. Preliminary summary 81 2.4. Summary 82 CHAPTER 3 WATERMARKING 84 3.1. Brief Introduction and Prior Works 85 3.1.1. Halftoning based techniques 87 3.1.1.1. Embed without halftoning 88 3.1.1.2. Embed with halftoning 93 3.1.2. BTC based techniques 96 3.1.2.1. Without marked images 99 3.1.2.2. With marked images and the use of halftoning-based BTC 101 3.1.2.3. With marked images and uncategorized manners 103 3.2. Halftone-Image Security Improving using Overall Minimal-Error Searching 106 3.2.1. Performance evaluations 107 3.2.2. Data hiding with overall minimal-error searching 110 3.2.2.1. ED-based encoder 111 3.2.2.2. LMS-based encoder 117 3.2.2.3. Substitution table (S-table) optimization procedure 119 3.2.3. PS effect correction 123 3.2.4. Experimental results 125 3.2.5. Preliminary summary 140 3.3. High Capacity Data Hiding for Error-Diffused Block Truncation Coding 141 3.3.1. Error-diffused block truncation coding (EDBTC) 141 3.3.2. Complementary hiding error-diffused block truncation coding 145 3.3.2.1. Encoder 145 3.3.2.2. Decoder 149 3.3.2.3. Multiple watermarks embedding extension 150 3.3.3. Experimental results 151 3.3.4. Preliminary summary 173 3.4. Joint Compression/Watermarking Scheme using Majority-Parity Guidance and Halftone-based Block Truncation Coding 174 3.4.1. Performance evaluation 174 3.4.2. Error-diffused block truncation coding 175 3.4.3. Majority-parity-guided error-diffused block truncation coding 179 3.4.3.1. MPG-EDBTC encoder 179 3.4.3.2. MPG-EDBTC decoder 183 3.4.3.3. Parameters 184 3.4.3.4. Attacks 192 3.4.3.4.1. Experimental results 192 3.4.3.4.2. Theoretical analyses 200 3.4.4. Multiple watermarks embedding 207 3.4.5. Preliminary summary 213 3.5. Summary 214 CHAPTER 4 *IMAGE CONTRAST ENHANCEMENT 216 4.1. Background and Previous Efforts 216 4.2. Parametric-oriented histogram equalization (POHE) 227 4.2.1. Traditional LHE 227 4.2.2. Concept description 228 4.2.3. Simplification 232 4.2.4. Implementation 233 4.3. Corrected parametric-oriented histogram equalization (CPOHE) 234 4.3.1. Classification 235 4.3.2. Contrast compensation 239 4.3.3. Approximation 240 4.3.3.1. μ_(i,j)^opt prediction 240 4.3.3.2. Symmetric correction 246 4.3.3.3. Integration 247 4.3.3.4. Implementation 250 4.4. Experimental results 251 4.5. Summary 257 CHAPTER 5 CONCLUSIONS 259 REFERENCES 261 BIOGRAPHY 268

    [1] R. Gregory and P. Cavanagh, “The blind spot,” Scholarpedia, vol. 6, no. 10, 2011.
    [2] K. K. DeValois and M. A. Webster, “Color vision,” Scholarpedia, vol. 6, no. 4, 2011.
    [3] B. Dresp-Langley, “Ehrenstein illusion,” Scholarpedia, vol. 4, no. 10, 2009.
    [4] Wikipedia. In Contrast effect. Retrieved on March 8, 2013, from http://en.wikipedia.org/wiki/Contrast_effect.
    [5] F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” Journal of Physiology, vol. 197, no. 3, pp. 551-566, August 1968.
    [6] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Processing Letters, vol. 9, no. 3, pp. 81-84, March 2002.
    [7] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600-612, April 2004.
    [8] Z. Wang and Q. Li, “Information content weighting for perceptual image quality assessment,” IEEE Trans. Image Processing, vol. 20, no. 5, pp. 1185-1197, May 2011.
    [9] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multi-scale structural similarity for image quality assessment,” in Proc. Asilomar Conf. Signals, Systems and Computers, vol. 2, pp. 1398-1402, 2003.
    [10] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,” IEEE Trans. Image Processing, vol. 15, no. 2, pp. 430-444, Feb. 2006.
    [11] R. Nasanen, “Visibility of halftone dot textures,” IEEE Trans. Systems, Man and Cybernetics, vol. SMC-14, no. 6, pp. 920-924, Nov.-Dec. 1984.
    [12] F. W. Cambell, R. H. S. Carpenter, and J. Z. Levinson, “Visibility of aperiodic patterns compared with that of sinusoidal gratings,” J. Physiology, vol. 204, pp. 283-298, Oct. 1969.
    [13] J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion on the encoding of images,” IEEE Trans. Information Theory, vol. 20, no. 4, pp. 525-536, July 1974.
    [14] S. Daly, “Subroutine for generation of a two dimensional human visual contrast sensitivity function,” Eastman Kodak, Technical Report, 1987.
    [15] J. M. Guo and Y. F. Liu, “Improved dot diffusion by diffused matrix and class matrix co-optimization,” IEEE Trans. Image Processing, vol. 18, no. 8, pp. 1804-1816, 2009.
    [16] J. M. Guo and Y. F. Liu, “Digital halftoning method utilizing diffused weighting and class matrix optimization,” U.S. Patent, US 8,077,355 B2, Dec. 13, 2011.
    [17] J. M. Guo and Y. F. Liu, “利用最佳化的擴散權重及類別矩陣的數位半色調影像處理方法以及其類別矩陣最佳化方法,” Taiwan Patent, I386867, Feb. 21, 2013.
    [18] Y. F. Liu and J. M. Guo, “New class tiling design for dot-diffused halftoning,” IEEE Trans. Image Processing, vol. 22, no. 3, pp. 1199-1208, March 2013.
    [19] D. E. Knuth, “Digital halftones by dot diffusion,” ACM Trans. Graph., vol. 6, no. 4, Oct. 1987.
    [20] M. Mese and P. P. Vaidyanathan, “Optimized halftoning using dot diffusion and methods for inverse halftoning,” IEEE Trans. Image Processing, vol. 9, pp. 691-709, Apr. 2000.
    [21] S. Lippens and W. Philips, “Green-noise halftoning with dot diffusion,” in Proc. SPIE/IS&T - The International Society for Optical Engineering, vol. 6497, no. 64970V, 2007.
    [22] R. Rivest, “The MD5 message-digest algorithm,” RFC 1321, U.S., April 1992.
    [23] J. M. Guo and Y. F. Liu, “Halftone-image security improving using overall minimal-error searching,” IEEE Trans. Image Processing, vol. 20, no. 10, pp. 2800-2812, Oct. 2011.
    [24] J. M. Guo and Y. F. Liu, “High capacity data hiding for error-diffused block truncation coding,” IEEE Trans. Image Processing, vol. 21, no.12, pp. 4808-4818, Dec. 2012.
    [25] J. M. Guo and Y. F. Liu, “Joint compression/watermarking scheme using majority-parity guidance and halftone-based block truncation coding,” IEEE Trans. Image Processing, vol. 19, no. 8, pp. 2056-2069, August 2010.
    [26] J. M. Guo, “Improved block truncation coding using modified error diffusion,” IET Electronics Letters, vol. 44, no. 7, pp. 462-464, March 2008.
    [27] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed., Reading, MA: Addison-Wesley, 1992.
    [28] R. Ulichney, Digital Halftoning, Cambridge, MA: MIT Press, 1987.
    [29] M. A. Seldowitz, J. P. Allebach, and D. W. Sweeney, “Synthesis of digital holograms by direct binary search,” Applied Optics, vol. 26, no. 14, pp. 2788-2798, 1987.
    [30] J. P. Allebach and Q. Lin, “FM screen design using DBS algorithm,” in Proc. IEEE International Conf. Image Processing, vol. 1, pp. 549-552, 1996.
    [31] D. J. Lieberman and J. P. Allebach, “Efficient model based halftoning using direct binary search,” in Proc. IEEE International Conf. Image Processing, vol. 1, pp. 775-778, 1997.
    [32] D. J. Lieberman and J. P. Allebach, “A dual interpretation for direct binary search and its implications for tone reproduction and texture quality,” IEEE Trans. Image Processing, vol. 9, no. 11, pp. 1950-1963, 2000.
    [33] R. W. Floyd and L. Steinberg, “An adaptive algorithm for spatial gray scale,” in Proc. SID 75 Digest. Society for information Display, pp. 36-37, 1975.
    [34] J. F. Jarvis, C. N. Judice, and W. H. Ninke, “A survey of techniques for the display of continuous-tone pictures on bilevel displays,” Comp. Graph. Image Proc., vol. 5, pp. 13-40, 1976.
    [35] P. Stucki, “MECCA-A multiple-error correcting computation algorithm for bilevel image hardcopy reproduction,” Res. Rep. RZ1060, IBM Res. Lab., Zurich, Switzerland, 1981.
    [36] J. N. Shiau and Z. Fan, “A set of easily implementable coefficients in error diffusion with reduced worm artifacts,” in Proc. SPIE: The International Society for Optical Engineering, vol. 2658, pp. 222-225, 1996.
    [37] V. Ostromoukhov, “A simple and efficient error-diffusion algorithm,” in Proc. ACM SIGGRAPH Conf. Computer Graphics, pp. 567-572, 2001.
    [38] P. Li and J. P. Allebach, “Tone-dependent error diffusion,” IEEE Trans. Image Processing, vol. 13, no. 2, pp. 201-215, Feb. 2004.
    [39] P. Li and J. P. Allebach, “Block interlaced pinwheel error diffusion,” Journal of Electronic Imaging, vol. 14, no. 2, pp. 1-13, Apr-Jun. 2005.
    [40] D. Kacker and J. P. Allebach, “Aperiodic micro screen design using DBS and training,” in Proc. SPIE – The International Society for Optical Engineering, vol. 3300, pp. 386-397, 1998.
    [41] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Trans. Image Processing, vol. 9, no. 4, pp. 636-650, April 2000.
    [42] T. C. Chang and J. P. Allebach, “Memory efficient error diffusion,” IEEE Trans. Image Processing, vol. 12, no. 11, pp. 1352-1366, Nov. 2003.
    [43] USC-SIPI image database. Retrieved on June 24, 2013, from http://sipi.usc.edu/database
    [44] L. Davis, Handbook of Genetic Algorithms, New York: Van Nostrand Reinhold, 1991.
    [45] NTUST MSP Lab natural image database. Retrieved on June 24, 2013, from http://msp.ee.ntust.edu.tw/public file/ImageSet.rar
    [46] M. S. Fu and O. C. Au, “Halftone image data hiding with intensity selection and connection selection,” Signal Processing Image Communication, vol. 16, no. 10, pp. 909-930, 2001.
    [47] M. S. Fu and O. C. Au, “Data hiding for halftone images,” in Proc. SPIE – The International Society for Optical Engineering, vol. 3971, pp. 228-236, 2000.
    [48] M. S. Fu and O. C. Au, “Data hiding by smart pair toggling for halftone images,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 4, pp. 2318-2321, 2000.
    [49] M. S. Fu and O. C. Au, “Data hiding watermarking for halftone images,” IEEE Trans. Image Processing, vol. 11, no. 4, pp. 477-484, 2002.
    [50] M. Guo and H. Zhang, “High capacity data hiding for binary image authentication,” in Proc. International Conference on Pattern Recognition, pp. 1441-1444, 2010.
    [51] M. Ulutas, “Meaningful share generation for increased number of secrets I visual secret-sharing scheme,” Mathematical Problems in Engineering, vol. 2010, pp. 1-18, 2010.
    [52] S.-C. Pei and J.-M. Guo, “High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square,” IEEE Trans. Image Processing, vol. 15, no. 6, pp. 1665-1679, 2006.
    [53] B. K. Lien and W.-D. Pei, “Reversible data hiding for ordered dithered halftone images,” in Proc. International Conference on Image Processing, pp. 4237-4240, 2009.
    [54] E. J. Delp and O. R. Mitchell, “Image compression using block truncation coding,” IEEE Trans. Communications Systems, vol. COM-27, no. 9, pp. 1335-1342, 1979.
    [55] Y.-G. Wu and S.-C. Tai, “An efficient BTC image compression technique,” IEEE Trans. Consumer Electronics, vol. 44, no. 2, pp. 317-325, 1998.
    [56] J. M. Guo and Y. F. Liu, “Improved block truncation coding using optimized dot diffusion,” IEEE Trans. Image Processing, to appear.
    [57] J. M. Guo and M. F. Wu, “Improved block truncation coding based on the void-and-cluster dithering approach,” IEEE Trans. Image Processing, vol. 18, no. 1, pp. 211-213, Jan. 2009.
    [58] S.-F. Tu and C.-S. Hsu, “A BTC-based watermarking scheme for digital images,” International Journal of Information & Security, vol. 15, no. 2, pp. 216-228, 2004.
    [59] J. M. Guo, M. F. Wu, and Y. C. Kang, “Watermarking in conjugate ordered dither block truncation coding images,” Signal Processing, vol. 89, no. 10, pp. 1864-1882, 2009.
    [60] C. Kim, “Data hiding based on compressed dithering images,” Studies in Computational Intelligence, vol. 283, pp. 89-98, 2010.
    [61] M.-H. Lin and C.-C. Chang, “A novel information hiding scheme based on BTC,” in Proc. International Conference on Computer and Information Technology, pp. 66-71, 2004.
    [62] C.-C. Chang, C.-Y. Lin, and Y.-H. Fan, “Lossless data hiding for color images based on block truncation coding,” Pattern Recognition, vol. 41, no. 7, pp. 2347-2357, 2008.
    [63] A. Shamir, “How to share a secret,” in Commun. ACM, vol. 22, pp. 612-613, 1979.
    [64] D. L. Lau and G. R. Arce, Modern Digital Halftoning. New York: Marcel Dekker, 2001.
    [65] Z. Wang and G. R. Arce, “Halftone visual cryptography by iterative halftoning,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1822-1825, 2010.
    [66] Y. Shen and Y. Ye, “Visual cryptography based multiparty copyright protect scheme,” in Proc. IEEE International Conference on Advanced Computer Control, pp. 223-226, 2010.
    [67] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. t. H. Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer Vision, Graphics, and Image Processing, vol. 39, no. 3, pp. 355-368, Sept. 1987.
    [68] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Trans. Image Processing, vol. 9, no. 5, pp. 889-896, May 2000.
    [69] Z. Yu and C. Bajaj, “A fast and adaptive method for image contrast enhancement,” in Proc. IEEE International Conference on Image Processing, vol. 5, pp. 1001-1004, 2004.
    [70] R. Deriche, “Fast algorithms for low-level vision,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 78-87, Jan. 1990.
    [71] J. Y. Kim, L. S. Kim, and S. H. Hwang, “An advanced contrast enhancement using partially overlapped sub-block histogram equalization,” IEEE Trans. Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 475-484, April 2001.
    [72] F. Lamberti, B. Montrucchio, and A. Sanna, “CMBFHE: A novel contrast enhancement technique based on cascaded multistep binomial filtering histogram equalization,” IEEE Trans. Consumer Electronics, vol. 52, no. 3, pp. 966-974, Aug. 2006.
    [73] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, NY: Dover, 1964.
    [74] M. Kutner, C. Nachtsheim, and J. Neter, Applied Linear Regression Models, 4th ed., NY: McGraw-Hill, 2004.
    [75] J. Bacca Rodriguez, G. R. Arce, and D. L. Lau, “Blue-noise multitone dithering,” IEEE Trans. Image Processing, vol. 17, no. 8, pp. 1368-1382, Aug. 2008.
    [76] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886-893, 2005.

    QR CODE