簡易檢索 / 詳目顯示

研究生: 陳學毓
Hsueh-Yu Chen
論文名稱: 電沈積三維孔洞型非貴重金屬觸媒於陰離子交換膜電解水陽極端之應用
Electrodeposited Three-dimensional Porous Non-precious Metal Catalyst for Anode in Anion Exchange Membrane Water Electrolysis
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 楊永欽
Yung-Chin Yang
邱德威
Te-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 142
中文關鍵詞: 電解水氧氣析出反應三維奈米結構原位技術
外文關鍵詞: operando method
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract III 誌謝 VI Contents VII List of Figures XI List of Tables XVIII Chapter 1 Introduction 1 1-1 Energy converting and storage 1 1-2 Hydrogen production via water electrolysis 2 1-2-1 Proton exchange membrane electrolysis 3 1-2-2 Anion exchange membrane electrolysis 4 1-3 The reaction of water electrolysis 6 Chapter 2 Literature Review 11 2-1 Non-precious metal catalysts 12 2-2 Co oxide-based catalysts 17 2-2-1 Hydrothermal and sintering method 18 2-2-2 Electrodeposition method 19 2-3 Main effect for catalyst design 21 2-3-1 Crystallinity effect 21 2-3-2 Structure effect 22 2-3-3 Heteroatoms effect 24 Chapter 3 Motivation 26 Chapter 4 Experimental Instruments 29 4-1 Chemicals and instruments 29 4-2 Experimental 32 4-2-1 Preparation of CoOOH/Cu/Ni foam 32 4-2-2 Preparation of NiCu/Ni foam 33 4-2-3 Preparation of NiCuP/Ni foam 34 4-3 Potentiostat 36 4-4 Electrochemical measurements 38 4-4-1 Linear sweep and cycle voltammetry (LSV and CV) 38 4-4-2 Turnover frequency (TOF) 39 4-4-3 Faraday efficiency (FE) 40 4-4-3 Anion exchange membrane for water electrolysis 40 4-5 X-ray diffraction Spectrometer (XRD) 43 4-6 Transmission Electron Microscope (TEM) 46 4-7 X-ray Photoelectron Spectroscopy (XPS) 48 4-8 X-ray absorption spectroscopy (XAS) 50 4-9 Operando XAS setup 55 Chapter 5 Operando identification of hydrangea-like and amorphous cobalt oxyhydroxide supported by thin-layer copper for oxygen evolution reaction 56 5-1 Morphology of the catalysts 56 5-2 Characteristics of the catalysts 62 5-3 Electrochemical performance of the catalysts 68 5-4 Long-term stability of the catalysts on AEMEL 72 5-5 Operando analysis of the catalysts 75 Chapter 6 Barnacle-like phosphorized nickel-copper porous catalysts for oxygen evolution reaction 81 6-1 Electrochemical performance of the catalysts 81 6-2 Morphology and characteristics of the catalysts 84 6-3 Characteristics of the catalysts 88 6-4 Long-term stability of the catalysts on AEMEL 97 Chapter 7 Conclusion 98 7-1 Operando identification of hydrangea-like and amorphous cobalt oxyhydroxide supported by thin-layer copper for oxygen evolution reaction 98 7-2 Barnacle-like phosphorized nickel-copper porous catalysts for oxygen evolution reaction 99 References 100

    [1] M. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, D. Stolten, Seasonal storage and alternative carriers: A flexible hydrogen supply chain model. Applied Energy, 200 (2017) 290-302.
    [2] S. Shiva Kumar, V. Himabindu, Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies, 2 (2019) 442-454.
    [3] F. Barbir, PEM electrolysis for production of hydrogen from renewable energy sources. Solar Energy, 78 (2005) 661-669.
    [4] C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, M. Comotti, Highly Efficient Platinum Group Metal Free Based Membrane-Electrode Assembly for Anion Exchange Membrane Water Electrolysis. Angewandte Chemie International Edition, 53 (2014) 1378-1381.
    [5] X. Wu, K. Scott, F. Xie, N. Alford, A reversible water electrolyser with porous PTFE based OH− conductive membrane as energy storage cells. Journal of Power Sources, 246 (2014) 225-231.
    [6] X. Wu, K. Scott, A polymethacrylate-based quaternary ammonium OH− ionomer binder for non-precious metal alkaline anion exchange membrane water electrolysers. Journal of Power Sources, 214 (2012) 124-129.
    [7] A.S. Aricò, S. Siracusano, N. Briguglio, V. Baglio, A. Di Blasi, V. Antonucci, Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. Journal of Applied Electrochemistry, 43 (2013) 107-118.
    [8] M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 38 (2013) 4901-4934.
    [9] X.-M. Liu, X. Cui, K. Dastafkan, H.-F. Wang, C. Tang, C. Zhao, A. Chen, C. He, M. Han, Q. Zhang, Recent advances in spinel-type electrocatalysts for bifunctional oxygen reduction and oxygen evolution reactions. Journal of Energy Chemistry, 53 (2021) 290-302.
    [10] H. Xia, Z. Huang, C. Lv, C. Zhang, A Self-Supported Porous Hierarchical Core–Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction. ACS Catalysis, 7 (2017) 8205-8213.
    [11] H. Jin, B. Ruqia, Y. Park, H.J. Kim, H.-S. Oh, S.-I. Choi, K. Lee, Nanocatalyst Design for Long-Term Operation of Proton/Anion Exchange Membrane Water Electrolysis. Advanced Energy Materials, 11 (2021) 2003188.
    [12] Ö.F. Selamet, F. Becerikli, M.D. Mat, Y. Kaplan, Development and testing of a highly efficient proton exchange membrane (PEM) electrolyzer stack. International Journal of Hydrogen Energy, 36 (2011) 11480-11487.
    [13] Z. Yan, J.L. Hitt, J.A. Turner, T.E. Mallouk, Renewable electricity storage using electrolysis. Proceedings of the National Academy of Sciences, 117 (2020) 12558.
    [14] K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 36 (2010) 307-326.
    [15] S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature, 488 (2012) 294-303.
    [16] Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-Horn, Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. The Journal of Physical Chemistry Letters, 3 (2012) 399-404.
    [17] T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic Oxygen Evolution Reaction (OER) on Ru, Ir, and Pt Catalysts: A Comparative Study of Nanoparticles and Bulk Materials. ACS Catalysis, 2 (2012) 1765-1772.
    [18] K. Sardar, E. Petrucco, C.I. Hiley, J.D.B. Sharman, P.P. Wells, A.E. Russell, R.J. Kashtiban, J. Sloan, R.I. Walton, Water-splitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew Chem Int Ed Engl, 53 (2014) 10960-10964.
    [19] Z. Zeng, M.K.Y. Chan, Z.-J. Zhao, J. Kubal, D. Fan, J. Greeley, Towards First Principles-Based Prediction of Highly Accurate Electrochemical Pourbaix Diagrams. The Journal of Physical Chemistry C, 119 (2015) 18177-18187.
    [20] F. Dionigi, P. Strasser, NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes. Advanced Energy Materials, 6 (2016) 1600621.
    [21] H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. Wu, Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11 (2016) 601-625.
    [22] M. Gong, H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 8 (2015) 23-39.
    [23] M.Z.A. Munshi, A.C.C. Tseung, J. Parker, The dissolution of iron from the negative material in pocket plate nickel-cadmium batteries. Journal of Applied Electrochemistry, 15 (1985) 711-717.
    [24] J.E. Post, Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America, 96 (1999) 3447-3454.
    [25] T.N. Huan, G. Rousse, S. Zanna, I.T. Lucas, X. Xu, N. Menguy, V. Mougel, M. Fontecave, A Dendritic Nanostructured Copper Oxide Electrocatalyst for the Oxygen Evolution Reaction. Angewandte Chemie International Edition, 56 (2017) 4792-4796.
    [26] B.M. Hunter, H.B. Gray, A.M. Müller, Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews, 116 (2016) 14120-14136.
    [27] L. Xu, Y. Zou, Z. Xiao, S. Wang, Transforming Co3O4 nanosheets into porous N-doped CoxOy nanosheets with oxygen vacancies for the oxygen evolution reaction. Journal of Energy Chemistry, 35 (2019) 24-29.
    [28] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar Water Splitting Cells. Chemical Reviews, 110 (2010) 6446-6473.
    [29] S. Li, X. Hao, A. Abudula, G. Guan, Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. Journal of Materials Chemistry A, 7 (2019) 18674-18707.
    [30] S.-H. Ye, Z.-X. Shi, J.-X. Feng, Y.-X. Tong, G.-R. Li, Activating CoOOH Porous Nanosheet Arrays by Partial Iron Substitution for Efficient Oxygen Evolution Reaction. Angewandte Chemie International Edition, 57 (2018) 2672-2676.
    [31] X. Han, C. Yu, S. Zhou, C. Zhao, H. Huang, J. Yang, Z. Liu, J. Zhao, J. Qiu, Ultrasensitive Iron-Triggered Nanosized Fe–CoOOH Integrated with Graphene for Highly Efficient Oxygen Evolution. Advanced Energy Materials, 7 (2017) 1602148.
    [32] D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V.B. Shenoy, G. Eda, M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Materials, 12 (2013) 850-855.
    [33] Y. Sun, S. Gao, F. Lei, J. Liu, L. Liang, Y. Xie, Atomically-thin non-layered cobalt oxide porous sheets for highly efficient oxygen-evolving electrocatalysts. Chemical Science, 5 (2014) 3976-3982.
    [34] J. Huang, J. Chen, T. Yao, J. He, S. Jiang, Z. Sun, Q. Liu, W. Cheng, F. Hu, Y. Jiang, Z. Pan, S. Wei, CoOOH Nanosheets with High Mass Activity for Water Oxidation. Angewandte Chemie International Edition, 54 (2015) 8722-8727.
    [35] L. Yu, H. Zhou, J. Sun, F. Qin, F. Yu, J. Bao, Y. Yu, S. Chen, Z. Ren, Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy & Environmental Science, 10 (2017) 1820-1827.
    [36] Y. Zhang, Q. Shao, Y. Pi, J. Guo, X. Huang, A Cost-Efficient Bifunctional Ultrathin Nanosheets Array for Electrochemical Overall Water Splitting. Small, 13 (2017) 1700355.
    [37] S. Song, H. Bao, X. Lin, X.-L. Du, J. Zhou, L. Zhang, N. Chen, J. Hu, J.-Q. Wang, Molten salt-assisted synthesis of bulk CoOOH as a water oxidation catalyst. Journal of Energy Chemistry, 42 (2020) 5-10.
    [38] W. Liu, H. Liu, L. Dang, H. Zhang, X. Wu, B. Yang, Z. Li, X. Zhang, L. Lei, S. Jin, Amorphous Cobalt–Iron Hydroxide Nanosheet Electrocatalyst for Efficient Electrochemical and Photo-Electrochemical Oxygen Evolution. Advanced Functional Materials, 27 (2017) 1603904.
    [39] R.N. Wasalathanthri, S. Jeffrey, R.A. Awni, K. Sun, D.M. Giolando, Electrodeposited Copper–Cobalt–Phosphide: A Stable Bifunctional Catalyst for Both Hydrogen and Oxygen Evolution Reactions. ACS Sustainable Chemistry & Engineering, 7 (2019) 3092-3100.
    [40] B. Liu, S. Qu, Y. Kou, Z. Liu, X. Chen, Y. Wu, X. Han, Y. Deng, W. Hu, C. Zhong, In Situ Electrodeposition of Cobalt Sulfide Nanosheet Arrays on Carbon Cloth as a Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Interfaces, 10 (2018) 30433-30440.
    [41] X. Cao, E. Johnson, M. Nath, Identifying high-efficiency oxygen evolution electrocatalysts from Co–Ni–Cu based selenides through combinatorial electrodeposition. Journal of Materials Chemistry A, 7 (2019) 9877-9889.
    [42] C. Sun, W. Pan, D. Zheng, Y. Zheng, J. Zhu, C. Liu, Low-Crystalline FeOOH Nanoflower Assembled Mesoporous Film Anchored on MWCNTs for High-Performance Supercapacitor Electrodes. ACS Omega, 5 (2020) 4532-4541.
    [43] L. Zhang, Q. Fan, K. Li, S. Zhang, X. Ma, First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustainable Energy & Fuels, 4 (2020) 5417-5432.
    [44] R.D.L. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel. Journal of the American Chemical Society, 135 (2013) 11580-11586.
    [45] C. Zhao, H. Zhang, W. Si, H. Wu, Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nature Communications, 7 (2016) 12543.
    [46] X. Zhang, Y. Xie, Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chemical Society Reviews, 42 (2013) 8187-8199.
    [47] Z. Yang, C. Zhao, Y. Qu, H. Zhou, F. Zhou, J. Wang, Y. Wu, Y. Li, Trifunctional Self-Supporting Cobalt-Embedded Carbon Nanotube Films for ORR, OER, and HER Triggered by Solid Diffusion from Bulk Metal. Advanced Materials, 31 (2019) 1808043.
    [48] Y. Pei, Y. Ge, H. Chu, W. Smith, P. Dong, P.M. Ajayan, M. Ye, J. Shen, Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting. Applied Catalysis B: Environmental, 244 (2019) 583-593.
    [49] X. Chia, A.Y.S. Eng, A. Ambrosi, S.M. Tan, M. Pumera, Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chemical Reviews, 115 (2015) 11941-11966.
    [50] L. Zhou, M. Shao, J. Li, S. Jiang, M. Wei, X. Duan, Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy, 41 (2017) 583-590.
    [51] C. Qin, Z. Ye, G. Ma, D. Li, Study on the Stability of CoxM3-xO4 (M = Ni, Mn and Ce) Nanowire Array Electrodes for Electrochemical Oxygen Evolution at Large Current Densities. Journal of The Electrochemical Society, 165 (2018) A3496-A3503.
    [52] J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov, R. Wang, N-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochimica Acta, 296 (2019) 653-661.
    [53] Y.-N. Zhou, W.-L. Yu, Y.-N. Cao, J. Zhao, B. Dong, Y. Ma, F.-L. Wang, R.-Y. Fan, Y.-L. Zhou, Y.-M. Chai, S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Applied Catalysis B: Environmental, 292 (2021) 120150.
    [54] D. Lim, C. Lim, M. Hwang, M. Kim, S.E. Shim, S.-H. Baeck, Facile synthesis of flower-like P-doped nickel-iron disulfide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Journal of Power Sources, 490 (2021) 229552.
    [55] C.-H. Shin, Y. Wei, G. Park, J. Kang, J.-S. Yu, High performance binder-free Fe–Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction. Sustainable Energy & Fuels, 4 (2020) 6311-6320.
    [56] A.S. Souza, L.S. Bezerra, E.S.F. Cardoso, G.V. Fortunato, G. Maia, Nickel pyrophosphate combined with graphene nanoribbon used as efficient catalyst for OER. Journal of Materials Chemistry A, 9 (2021) 11255-11267.
    [57] G. Chang, G.C. Schatz, Modern Problems in Classical Electrodynamics. By Charles A. Brau. ChemPhysChem, 6 (2005) 374-374.
    [58] J.D. Jackson, Classical Electrodynamics. John Wiley & Sons, (1999).
    [59] A. Balram, H. Zhang, S. Santhanagopalan, Enhanced Oxygen Evolution Reaction Electrocatalysis via Electrodeposited Amorphous α-Phase Nickel-Cobalt Hydroxide Nanodendrite Forests. ACS Applied Materials & Interfaces, 9 (2017) 28355-28365.
    [60] M.A. Sayeed, T. Herd, A.P. O'Mullane, Direct electrochemical formation of nanostructured amorphous Co(OH)2 on gold electrodes with enhanced activity for the oxygen evolution reaction. Journal of Materials Chemistry A, 4 (2016) 991-999.
    [61] A. Bergmann, E. Martinez-Moreno, D. Teschner, P. Chernev, M. Gliech, J.F. de Araújo, T. Reier, H. Dau, P. Strasser, Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nature Communications, 6 (2015) 8625.
    [62] Z. Saberi, B. Rezaei, H. Faroukhpour, A.A. Ensafi, A fluorometric aptasensor for methamphetamine based on fluorescence resonance energy transfer using cobalt oxyhydroxide nanosheets and carbon dots. Microchimica Acta, 185 (2018) 303.
    [63] A.D. Jagadale, D.P. Dubal, C.D. Lokhande, Electrochemical behavior of potentiodynamically deposited cobalt oxyhydroxide (CoOOH) thin films for supercapacitor application. Materials Research Bulletin, 47 (2012) 672-676.
    [64] Z. Chen, C.X. Kronawitter, Y.-W. Yeh, X. Yang, P. Zhao, N. Yao, B.E. Koel, Activity of pure and transition metal-modified CoOOH for the oxygen evolution reaction in an alkaline medium. Journal of Materials Chemistry A, 5 (2017) 842-850.
    [65] H.B. Li, P. Liu, Y. Liang, J. Xiao, G.W. Yang, Amorphous cobalt hydroxide nanostructures and magnetism from green electrochemistry. RSC Advances, 3 (2013) 26412-26417.
    [66] G.-C. Chen, T.H. Wondimu, H.-C. Huang, K.-C. Wang, C.-H. Wang, Microwave-assisted facile synthesis of cobaltiron oxide nanocomposites for oxygen production using alkaline anion exchange membrane water electrolysis. International Journal of Hydrogen Energy, 44 (2019) 10174-10181.
    [67] H. Liu, J. Yu, J. Sunarso, C. Zhou, B. Liu, Y. Shen, W. Zhou, Z. Shao, Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst. Electrochimica Acta, 282 (2018) 324-330.
    [68] R.L. Doyle, M.E.G. Lyons, An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Physical Chemistry Chemical Physics, 15 (2013) 5224-5237.
    [69] Z. Hao, P. Wei, Y. Yang, J. Sun, Y. Song, D. Guo, L. Liu, Self-assembled CuCo2S4 nanosheets with rich surface Co3+ as efficient electrocatalysts for oxygen evolution reaction. Applied Surface Science, 536 (2021) 147826.
    [70] W. Bao, L. Xiao, J. Zhang, P. Jiang, X. Zou, C. Yang, X. Hao, T. Ai, Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction. International Journal of Hydrogen Energy, 46 (2021) 10259-10267.
    [71] L. Yang, B. Zhang, B. Fang, L. Feng, A comparative study of NiCo2O4 catalyst supported on Ni foam and from solution residuals fabricated by a hydrothermal approach for electrochemical oxygen evolution reaction. Chemical Communications, 54 (2018) 13151-13154.
    [72] H. Qiao, J. Yong, X. Dai, X. Zhang, Y. Ma, M. Liu, X. Luan, J. Cai, Y. Yang, H. Zhao, X. Huang, Hollow FeNi-based hybrid polyhedron derived from unique sulfur-modulating coordinated transition bimetal complexes for efficient oxygen evolution reactions. Journal of Materials Chemistry A, 5 (2017) 21320-21327.
    [73] H. Zeng, M.h. Oubla, X. Zhong, N. Alonso-Vante, F. Du, Y. Xie, Y. Huang, J. Ma, Rational defect and anion chemistries in Co3O4 for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 281 (2021) 119535.
    [74] A.C. Thenuwara, N.H. Attanayake, J. Yu, J.P. Perdew, E.J. Elzinga, Q. Yan, D.R. Strongin, Cobalt Intercalated Layered NiFe Double Hydroxides for the Oxygen Evolution Reaction. The Journal of Physical Chemistry B, 122 (2018) 847-854.
    [75] K. Tang, X. Wang, M. Wang, Y. Xie, J. Zhou, C. Yan, Ni/Fe Ratio Dependence of Catalytic Activity in Monodisperse Ternary Nickel Iron Phosphide for Efficient Water Oxidation. ChemElectroChem, 4 (2017) 2150-2157.
    [76] M.-Y. Ye, S. Li, X. Zhao, N.V. Tarakina, C. Teutloff, W.Y. Chow, R. Bittl, A. Thomas, Cobalt-Exchanged Poly(Heptazine Imides) as Transition Metal–Nx Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 32 (2020) 1903942.
    [77] H.-S. Hu, Y. Li, Y.-R. Shao, K.-X. Li, G. Deng, C.-B. Wang, Y.-Y. Feng, NiCoP nanorod arrays as high-performance bifunctional electrocatalyst for overall water splitting at high current densities. Journal of Power Sources, 484 (2021) 229269.
    [78] X. Wang, L. Li, L. Xu, Z. Wang, Z. Wu, Z. Liu, P. Yangs, An efficient and stable MnCo@NiS catalyst for oxygen evolution reaction constructed by a step-by-step electrodeposition way. Journal of Power Sources, 489 (2021) 229525.
    [79] Q. Chen, Y. Fu, J. Jin, W. Zang, X. Liu, X. Zhang, W. Huang, Z. Kou, J. Wang, L. Zhou, L. Mai, In-situ surface self-reconstruction in ternary transition metal dichalcogenide nanorod arrays enables efficient electrocatalytic oxygen evolution. Journal of Energy Chemistry, 55 (2021) 10-16.
    [80] L. Zhang, J. Peng, W. Zhang, Y. Yuan, K. Peng, Rational introduction of borate and phosphate ions on NiCo2O4 surface for high-efficiency overall water splitting. Journal of Power Sources, 490 (2021) 229541.
    [81] B. Liu, M. Zhang, Y. Wang, Z. Chen, K. Yan, Facile synthesis of defect-rich ultrathin NiCo-LDHs, NiMn-LDHs and NiCoMn-LDHs nanosheets on Ni foam for enhanced oxygen evolution reaction performance. Journal of Alloys and Compounds, 852 (2021) 156949.
    [82] S. Aralekallu, V.A. Sajjan, M. Palanna, K. Prabhu C P, M. Hojamberdiev, L.K. Sannegowda, Ni foam-supported azo linkage cobalt phthalocyanine as an efficient electrocatalyst for oxygen evolution reaction. Journal of Power Sources, 449 (2020) 227516.
    [83] Y.S. Park, M.J. Jang, J. Jeong, S.M. Park, X. Wang, M.H. Seo, S.M. Choi, J. Yang, Hierarchical Chestnut-Burr Like Structure of Copper Cobalt Oxide Electrocatalyst Directly Grown on Ni Foam for Anion Exchange Membrane Water Electrolysis. ACS Sustainable Chemistry & Engineering, 8 (2020) 2344-2349.
    [84] Q. Liu, H. Zhao, M. Jiang, Q. Kang, W. Zhou, P. Wang, F. Zhou, Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. Journal of Materials Chemistry A, 8 (2020) 13638-13645.
    [85] L. Huang, D. Chen, G. Luo, Y.-R. Lu, C. Chen, Y. Zou, C.-L. Dong, Y. Li, S. Wang, Zirconium-Regulation-Induced Bifunctionality in 3D Cobalt–Iron Oxide Nanosheets for Overall Water Splitting. Advanced Materials, 31 (2019) 1901439.
    [86] D. Senthil Raja, X.-F. Chuah, S.-Y. Lu, In Situ Grown Bimetallic MOF-Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities. Advanced Energy Materials, 8 (2018) 1801065.
    [87] J. Duan, S. Chen, A. Vasileff, S.Z. Qiao, Anion and Cation Modulation in Metal Compounds for Bifunctional Overall Water Splitting. ACS Nano, 10 (2016) 8738-8745.
    [88] C.H.M. van Oversteeg, H.Q. Doan, F.M.F. de Groot, T. Cuk, In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. Chemical Society Reviews, 46 (2017) 102-125.
    [89] J. Zhou, Y. Wang, X. Su, S. Gu, R. Liu, Y. Huang, S. Yan, J. Li, S. Zhang, Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy & Environmental Science, 12 (2019) 739-746.
    [90] X. Su, Y. Wang, J. Zhou, S. Gu, J. Li, S. Zhang, Operando Spectroscopic Identification of Active Sites in NiFe Prussian Blue Analogues as Electrocatalysts: Activation of Oxygen Atoms for Oxygen Evolution Reaction. Journal of the American Chemical Society, 140 (2018) 11286-11292.
    [91] J. Chen, A. Selloni, Water Adsorption and Oxidation at the Co3O4 (110) Surface. The Journal of Physical Chemistry Letters, 3 (2012) 2808-2814.
    [92] H.-C. Huang, S.-T. Chang, H.-C. Hsu, H.-Y. Du, C.-H. Wang, L.-C. Chen, K.-H. Chen, Pyrolysis of Iron–Vitamin B9 As a Potential Nonprecious Metal Electrocatalyst for Oxygen Reduction Reaction. ACS Sustainable Chemistry & Engineering, 5 (2017) 2897-2905.
    [93] M.J. Jang, J. Yang, J. Lee, Y.S. Park, J. Jeong, S.M. Park, J.-Y. Jeong, Y. Yin, M.-H. Seo, S.M. Choi, K.H. Lee, Superior performance and stability of anion exchange membrane water electrolysis: pH-controlled copper cobalt oxide nanoparticles for the oxygen evolution reaction. Journal of Materials Chemistry A, 8 (2020) 4290-4299.
    [94] K. Luo, M.R. Roberts, N. Guerrini, N. Tapia-Ruiz, R. Hao, F. Massel, D.M. Pickup, S. Ramos, Y.-S. Liu, J. Guo, A.V. Chadwick, L.C. Duda, P.G. Bruce, Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li0.2Ni0.2Mn0.6]O2. Journal of the American Chemical Society, 138 (2016) 11211-11218.
    [95] A. Grimaud, O. Diaz-Morales, B. Han, W.T. Hong, Y.-L. Lee, L. Giordano, K.A. Stoerzinger, M.T.M. Koper, Y. Shao-Horn, Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nature Chemistry, 9 (2017) 457-465.
    [96] H.A. Bandal, A.R. Jadhav, A.H. Tamboli, H. Kim, Bimetallic iron cobalt oxide self-supported on Ni-Foam: An efficient bifunctional electrocatalyst for oxygen and hydrogen evolution reaction. Electrochimica Acta, 249 (2017) 253-262.
    [97] R.L. Doyle, I.J. Godwin, M.P. Brandon, M.E.G. Lyons, Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Physical Chemistry Chemical Physics, 15 (2013) 13737-13783.
    [98] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Scientific Reports, 5 (2015) 13801.
    [99] G. Park, C.-H. Shin, J. Kang, K.-S. Lee, C. Zhang, B. Lim, C. Kim, J.-S. Yu, Controllable synthesis of single-layer graphene over cobalt nanoparticles and insight into active sites for efficient oxygen evolution. Journal of Materials Chemistry A, 9 (2021) 12060-12073.
    [100] N.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H.M. Chen, Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews, 46 (2017) 337-365.
    [101] A. Cárdenas-Arenas, A. Quindimil, A. Davó-Quiñonero, E. Bailón-García, D. Lozano-Castelló, U. De-La-Torre, B. Pereda-Ayo, J.A. González-Marcos, J.R. González-Velasco, A. Bueno-López, Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Applied Catalysis B: Environmental, 265 (2020).
    [102] S. Liu, R. Ji, Y. Liu, F. Zhang, H. Jin, X. Li, Q. Zheng, S. Lu, B. Cai, Effects of boric acid and water on the deposition of Ni/TiO2 composite coatings from deep eutectic solvent. Surface and Coatings Technology, 409 (2021) 126834.
    [103] Q. Sun, Y. Li, J. Wang, B. Cao, Y. Yu, C. Zhou, G. Zhang, Z. Wang, C. Zhao, Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. Journal of Materials Chemistry A, 8 (2020) 21084-21093.
    [104] I. Belov, C. Zanella, C. Edström, P. Leisner, Finite element modeling of silver electrodeposition for evaluation of thickness distribution on complex geometries. Materials & Design, 90 (2016) 693-703.
    [105] R.P. Vasquez, CuSO4 by XPS. Surface Science Spectra, 5 (1998) 279-284.
    [106] S. Wei, K. Qi, Z. Jin, J. Cao, W. Zheng, H. Chen, X. Cui, One-Step Synthesis of a Self-Supported Copper Phosphide Nanobush for Overall Water Splitting. ACS Omega, 1 (2016) 1367-1373.
    [107] A.C. Miller, G.W. Simmons, Copper by XPS. Surface Science Spectra, 2 (1993) 55-60.
    [108] A. Sarkar, D. Seth, M. Jiang, F.T.T. Ng, G.L. Rempel, Active Sites of a NiSO4/γ-Al2O3 Catalyst for the Oligomerization of Isobutene. Topics in Catalysis, 57 (2014) 730-740.
    [109] H.W. Nesbitt, D. Legrand, G.M. Bancroft, Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Physics and Chemistry of Minerals, 27 (2000) 357-366.
    [110] A.N. Mansour, Characterization of NiO by XPS. Surface Science Spectra, 3 (1994) 231-238.
    [111] A.M. Hengne, A.K. Samal, L.R. Enakonda, M. Harb, L.E. Gevers, D.H. Anjum, M.N. Hedhili, Y. Saih, K.-W. Huang, J.-M. Basset, Ni–Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol. ACS Omega, 3 (2018) 3688-3701.
    [112] H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C.-W. Chu, Z. Ren, Highly active catalyst derived from a 3D foam of FeP for extremely efficient water oxidation. Proceedings of the National Academy of Sciences, 114 (2017) 5607.
    [113] X. Zhou, X. Liao, X. Pan, M. Yan, L. He, P. Wu, Y. Zhao, W. Luo, L. Mai, Unveiling the role of surface P–O group in P-doped Co3O4 for electrocatalytic oxygen evolution by On-chip micro-device. Nano Energy, 83 (2021) 105748.
    [114] V. Logvinenko, V. Bakovets, L. Trushnikova, Decomposition processes of nickel hydroxide. Journal of Thermal Analysis and Calorimetry, 107 (2012) 983-987.
    [115] H. Song, M. Dai, H. Song, X. Wan, X. Xu, C. Zhang, H. Wang, Synthesis of a Ni2P catalyst supported on anatase–TiO2 whiskers with high hydrodesulfurization activity, based on triphenylphosphine. Catalysis Communications, 43 (2014) 151-154.
    [116] B.K. Kim, S.-K. Kim, S.K. Cho, J.J. Kim, Enhanced catalytic activity of electrodeposited Ni-Cu-P toward oxygen evolution reaction. Applied Catalysis B: Environmental, 237 (2018) 409-415.
    [117] A. Ray, S. Sultana, L. Paramanik, K.M. Parida, Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting. Journal of Materials Chemistry A, 8 (2020) 19196-19245.

    無法下載圖示 全文公開日期 2025/02/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE