簡易檢索 / 詳目顯示

研究生: 沈暐鈞
Wei-chung Shen
論文名稱: 利用可逆性加成-分裂鏈轉移聚合法及鏈接反應經由多功能嫁接策略製備含多面體倍半矽氧烷寡聚物之星狀複合高分子
Versatile Grafting Approaches to Star-Shaped POSS-Containing Hybrid Polymers using RAFT Polymerization and Click Chemistry
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 張豐志
none
林智汶
Chi-wen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 143
中文關鍵詞: 可逆性鏈轉移聚合法鏈接化學多面體倍半矽氧烷寡聚物星狀高分子
外文關鍵詞: RAFT polymerization, click chemistry, POSS, star polymer
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於利用可逆性加成-分裂鏈轉移聚合法(RAFT)和鏈接化學(Click chemistry)以”Grafting to”和”Grafting from”不同嫁接策略製備出聚甲基丙烯酸甲酯(PMMA)含多面體倍半矽氧烷寡聚物(POSS)之星狀複合高分子,並且探討不同嫁接策略製備星狀複合高分子之差異及特性。對於”Grafting to” 嫁接策略而言,首先製備出修飾含炔類之多面體倍半矽氧烷寡聚物(8P-POSS),並利用鏈接化學嫁接上不同分子量之末端修飾有疊氮之PMMA,最終獲得以POSS為核之星狀高分子(Star Polymer)。對於”Grafting from” 嫁接策略而言,首先製備POSS表面具有八個二硫代酯(dithiobenzoate groups)之新型態RAFT鏈轉移試劑,並且有效的利用並且控制於RAFT聚合反應中,最終同樣的成功的製備出POSS為核之星狀高分子。
    利用這些有效的工具以”Grafting to”或者”Grafting from”嫁接策略皆能有效控制高分子鏈結構及接枝密度。然而,”Grafting to”策略因為高分子鏈長產生之立體障礙效應,使得嫁接密度下降 (95.5% 到28.4%);”Grafting from” 策略以8CTA-POSS為核心成長高分子,嫁接密度達96.4%,但聚合過程中有機會伴隨著線性高分子在外圍產生,尤其在預期分子量越大之星狀複合高分子更為明顯。最終,此研究提供了多樣性嫁接策略製備出含有POSS之星狀高分子,此珍貴的資訊展現不同嫁接策略之優點,並可延伸至其它材料之表面修飾化學之應用。


    Both click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization were used to prepare star-shaped POSS-containing polymer hybrids using ‘grafting to’ and ‘grafting from’ approaches. For the ‘grafting to’ approach, we first prepared alkyne-functionalized POSS (8P-POSS), which was used to modify azido-terminated polymethyl methacrylate (PMMA) with different Mw moieties to generate star polymers using click chemistry. For the ‘grafting from’ approach, new RAFT agents with 8 terminal dithiobenzoate groups on the surface of POSS were prepared, and successively used in the RAFT polymerization to produce well-defined star-shaped polymers. These powerful tools gave control over the polymer’s: length, architecture and graft density in both the ‘grafting to’ and ‘grafting from’ approaches; however, graft density decreased due to the effect of steric hindrance predominating on the surface of POSS. Here, we provide a versatile strategy to prepare star-shaped POSS-containing polymer hybrids, together with valuable information showing the advantages of different grafting reactions applicable to surface modification applications.

    中文摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 5 1.3研究架構 6 第二章 文獻回顧 8 2.1多面體倍半矽氧烷寡聚物(Polyhedral Oligomeric Silsesquioxanes,POSS)簡介 8 2.1.1 多面體倍半矽氧烷寡聚物(POSS)的定義與製備 8 2.1.2多面體倍半矽氧烷寡聚物(POSS)相較於其它填充材料 11 2.1.3多面體倍半矽氧烷寡聚物(POSS)與高分子共聚方法 12 2.1.4 多面體倍半矽氧烷寡聚物(POSS)之相關發展 14 2.2 活性自由基聚合系統(Living radical polymerization system) 21 2.2.1 原子轉移自由基聚合法(Atom Tansfer Radical Polymerization,ATRP) 22 2.2.2穩定自由基聚合法(stable free radical polymerization,SFRP) 24 2.2.3 可逆性加成-分裂鏈轉移聚合法[71-73](reversible additional-fragmentation chain transfer,RAFT) 26 2.2.3.1可逆性加成-分裂鏈轉移聚合法(reversible addition-fragmentation chain transfer,RAFT)機制[74] 26 2.2.3.2活化基(Z group)與離去基(R group) 29 2.3 1,3-偶極環化加成反應(1,3 dipolar cycloaddition,Click reaction) 31 第三章 實驗藥品、設備、原理及步驟 39 3.1實驗藥品與設備 39 3.1.1 實驗材料與藥品 39 3.1.2實驗設備與器材 46 3.2反應合成之流程與結構示意圖: 47 3.3 單體之合成與製備 49 3.3.1 單體3-propargyl carbonyl propionic Acid (PCPA)之合成 49 3.3.2單體3-propargylcarbonyl propionic chloride (PCPCL)之合成 49 3.3.3單體Octakis(dimethylsilyloxy)hydroxypropyl silsesquioxane (8OH-POSS) 之合成 50 3.3.4 單體Octakis(dimethylsilyloxy)propargyl carbonyl-silsesquioxane (8P-POSS) 之合成 50 3.3.5單體 Di(thiobenzoyl) Disulfide之合成 51 3.3.6 單體4-cyano-4-(thiobenzoyl) sulfonyl pentanoic acid (CTB; RAFT chain transfer agents (CTAs)) 之合成 52 3.3.7 單體3-Azidopropanol之合成 52 3.3.8 單體3-azidopropyl 4-cyano-4-((phenylcarbonothioyl)thio) butanoate (Azido-CTAs) 之合成 53 3.3.9 單體Octakis(dimethylsilyloxy)-4-cyano-4-((phenylcarbonothioyl)thio)butanoate-silsesquioxane (8CTAs-POSS) 之合成 54 3.4 MMA與Azido-CTAs的一般RAFT聚合反應程序(azidoterminated polymer, PMMA-N3) 54 3.5 疊氮封端(Azidoterminated)聚合物之模範鏈接反應程序 55 3.6 薄膜之製備 55 3.7實驗方法與儀器原理 56 3.7.1 單體結構鑑定 56 3.7.1.1 傅立葉轉換紅外光譜儀(Fourier transform infrared spectroscopy、FTIR)鑑定 56 3.7.1.2 液態核磁共振儀(Solution Nuclear Magnetic Resonance、NMR) 58 3.7.1.3 凝膠滲透層析儀(Gel permeation chromatography、GPC) 58 3.7.2 熱性質之分析 59 3.7.2.1 熱重分析儀(Thermogravimetric analysis、TGA) 59 3.7.2.2 示差掃瞄熱分析法(DSC) 60 第四章 實驗結果與討論 61 4.1前驅物單體 NMR及GPC鑑定 61 4.1.1 單體3-propargyl carbonyl propionic Acid (PCPA)之合成鑑定 62 4.1.2單體3-propargylcarbonyl propionic chloride (PCPCL)之合成鑑定 64 4.1.3單體Octakis(dimethylsilyloxy)hydroxypropyl silsesquioxane (8OH-POSS) 之合成鑑定 66 4.1.4 單體Octakis(dimethylsilyloxy)propargyl carbonyl-silsesquioxane (8P-POSS) 之合成鑑定 68 4.1.5單體 Di(thiobenzoyl) Disulfide之合成鑑定 71 4.1.6 單體4-cyano-4-(thiobenzoyl) sulfonyl pentanoic acid (CTA; RAFT chain transfer agents (CTAs)) 之合成鑑定 73 4.1.7 單體3-Azidopropanol之合成鑑定 75 4.1.8 單體3-azidopropyl 4-cyano-4-((phenylcarbonothioyl)thio)butanoate (Azido-CTAs) 之合成鑑定 77 4.1.9 單體Octakis(dimethylsilyloxy)-4-cyano-4- ((phenylcarbonothioyl)thio)butanoate-silsesquioxane (8CTAs-POSS) 之合成鑑定 80 4.1.10 POSS延伸物之GPC與FTIR分析鑑定 85 4.2 以“Grafting to”策略與方法 製備星狀複合高分子 88 4.2.1 RAFT線性聚合之GPC與1H-NMR鑑定與分析 89 4.2.2 Azidoterminated聚合物的模範鏈接反應之1H-NMR鑑定與分析 93 4.2.3 “Grafting to” 策略之GPC鑑定與分析 94 4.3以”Grafting from”策略與方法 製備星狀複合高分子 97 4.3.1 “Graft from” 策略聚合之GPC鑑定與分析 99 4.4 兩種策略之綜合討論 105 4.4.1 熱裂解之分析與比較 105 4.4.2 玻璃轉移溫度之分析與比較 107 第五章 結論 113 第六章 未來研究方向 115 第七章 參考文獻 116

    1. Laberty-Robert C, Valle K, Pereira F, Sanchez C: Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chemical Society Reviews 2011, 40(2):961-1005.
    2. Vallet-Regi M, Colilla M, Gonzalez B: Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chemical Society Reviews 2011, 40(2):596-607.
    3. Achilleos DS, Vamvakaki M: End-Grafted Polymer Chains onto Inorganic Nano-Objects. Materials 2010, 3(3):1981-2026.
    4. Wang X, Ervithayasuporn V, Zhang Y, Kawakami Y: Reversible self-assembly of dendrimer based on polyhedral oligomeric silsesquioxanes (POSS). Chemical Communications 2011, 47(4):1282-1284.
    5. Pyun J, Matyjaszewski K, Kowalewski T, Savin D, Patterson G, Kickelbick G, Huesing N: Synthesis of Well-Defined Block Copolymers Tethered to Polysilsesquioxane Nanoparticles and Their Nanoscale Morphology on Surfaces. Journal of the American Chemical Society 2001, 123(38):9445-9446.
    6. Ge Z, Wang D, Zhou Y, Liu H, Liu S: Synthesis of Organic/Inorganic Hybrid Quatrefoil-Shaped Star-Cyclic Polymer Containing a Polyhedral Oligomeric Silsesquioxane Core. Macromolecules 2009, 42(8):2903-2910.
    7. Gungor E, Bilir C, Durmaz H, Hizal G, Tunca U: Star polymers with POSS via azide–alkyne click reaction. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47(22):5947-5953.
    8. Zhang W, Muller AHE: A “Click Chemistry” Approach to Linear and Star-Shaped Telechelic POSS-Containing Hybrid Polymers. Macromolecules 2010, 43(7):3148-3152.
    9. Lu X, Sun F, Wang J, Zhong J, Dong Q: A Facile Route to Prepare Organic/Inorganic Hybrid Nanomaterials by ‘Click Chemistry’. Macromolecular Rapid Communications 2009, 30(24):2116-2120.
    10. Wang Z, Leng S, Wang Z, Li G, Yu H: Nanostructured Organic−Inorganic Copolymer Networks Based on Polymethacrylate-Functionalized Octaphenylsilsesquioxane and Methyl Methacrylate: Synthesis and Characterization. Macromolecules 2011, 44(3):566-574.
    11. Wang F, Lu X, He C: Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials. Journal of Materials Chemistry 2011.
    12. Ye Y-S, Yen Y-C, Chen W-Y, Cheng C-C, Chang F-C: A simple approach toward low-dielectric polyimide nanocomposites: Blending the polyimide precursor with a fluorinated polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A: Polymer Chemistry 2008, 46(18):6296-6304.
    13. Boyer C, Stenzel MH, Davis TP: Building nanostructures using RAFT polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49(3):551-595.
    14. Lowe AB, McCormick CL: Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science 2007, 32(3):283-351.
    15. Kolb HC, Finn MG, Sharpless KB: Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition 2001, 40(11):2004-2021.
    16. Sumerlin BS, Vogt AP: Macromolecular Engineering through Click Chemistry and Other Efficient Transformations. Macromolecules 2009, 43(1):1-13.
    17. Gondi SR, Vogt AP, Sumerlin BS: Versatile Pathway to Functional Telechelics via RAFT Polymerization and Click Chemistry. Macromolecules 2007, 40(3):474-481.
    18. Quemener D, Davis TP, Barner-Kowollik C, Stenzel MH: RAFT and click chemistry: A versatile approach to well-defined block copolymers. Chemical Communications 2006(48):5051-5053.
    19. Ranjan R, Brittain WJ: Combination of Living Radical Polymerization and Click Chemistry for Surface Modification. Macromolecules 2007, 40(17):6217-6223.
    20. Huang Y, Liu Q, Zhou X, Perrier Sb, Zhao Y: Synthesis of Silica Particles Grafted with Well-Defined Living Polymeric Chains by Combination of RAFT Polymerization and Coupling Reaction. Macromolecules 2009, 42(15):5509-5517.
    21. von Werne T, Patten TE: Preparation of Structurally Well-Defined Polymer−Nanoparticle Hybrids with Controlled/Living Radical Polymerizations. Journal of the American Chemical Society 1999, 121(32):7409-7410.
    22. von Werne T, Patten TE: Atom Transfer Radical Polymerization from Nanoparticles:  A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/“Living” Radical Polymerizations from Surfaces. Journal of the American Chemical Society 2001, 123(31):7497-7505.
    23. Pyun J, Jia S, Kowalewski T, Patterson GD, Matyjaszewski K: Synthesis and Characterization of Organic/Inorganic Hybrid Nanoparticles:  Kinetics of Surface-Initiated Atom Transfer Radical Polymerization and Morphology of Hybrid Nanoparticle Ultrathin Films. Macromolecules 2003, 36(14):5094-5104.
    24. Carrot G, Diamanti S, Manuszak M, Charleux B, Vairon JP: Atom transfer radical polymerization of n-butyl acrylate from silica nanoparticles. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39(24):4294-4301.
    25. Bottcher H, Hallensleben ML, Nus S, Wurm H: ATRP grafting from silica surface to create first and second generation of grafts. Polymer Bulletin 2000, 44(2):223-229.
    26. El Harrak A, Carrot G, Oberdisse J, Jestin J, Boue F: Atom transfer radical polymerization from silica nanoparticles using the [`]grafting from' method and structural study via small-angle neutron scattering. Polymer 2005, 46(4):1095-1104.
    27. Pyun J, Matyjaszewski K: Synthesis of Nanocomposite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization. Chemistry of Materials 2001, 13(10):3436-3448.
    28. Carrot G, Harrak AE, Oberdisse J, Jestin J, Boue F: Polymer grafting from 10-nm individual particles: proving control by neutron scattering. Soft Matter 2006, 2(12):1043-1047.
    29. Lei Z, Bi S: Preparation of polymer nanocomposites of core-shell structure via surface-initiated atom transfer radical polymerizations. Materials Letters 2007, 61(16):3531-3534.
    30. Savin DA, Pyun J, Patterson GD, Kowalewski T, Matyjaszewski K: Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: Effect of constraint on the glass-transition temperature of spherical polymer brushes. Journal of Polymer Science Part B: Polymer Physics 2002, 40(23):2667-2676.
    31. Zhang K, Ma J, Zhang B, Zhao S, Li Y, Xu Y, Yu W, Wang J: Synthesis of thermoresponsive silica nanoparticle/PNIPAM hybrids by aqueous surface-initiated atom transfer radical polymerization. Materials Letters 2007, 61(4-5):949-952.
    32. Perruchot C, Khan MA, Kamitsi A, Armes SP, Watts JF, von Werne T, Patten TE: XPS characterisation of core-shell silica-polymer composite particles synthesised by atom transfer radical polymerisation in aqueous media. European Polymer Journal 2004, 40(9):2129-2141.
    33. Ohno K, Morinaga T, Koh K, Tsujii Y, Fukuda T: Synthesis of Monodisperse Silica Particles Coated with Well-Defined, High-Density Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization. Macromolecules 2005, 38(6):2137-2142.
    34. Meads JA, Kipping FS: LIV.-Organic derivatives of silicon. Part XXIII. Further experiments on the so-called siliconic acids. Journal of the Chemical Society, Transactions 1915, 107:459-468.
    35. Brown JF, Vogt LH: The Polycondensation of Cyclohexylsilanetriol. Journal of the American Chemical Society 1965, 87(19):4313-4317.
    36. Brown Jr JF: The polycondensation of phenylsilanetriol. Journal of the American Chemical Society 1965, 87(19):4317-4324.
    37. Baney RH, Itoh M, Sakakibara A, Suzuki T: Silsesquioxanes. Chemical Reviews 1995, 95(5):1409-1430.
    38. Feher FJ, Budzichowski TA, Blanski RL, Weller KJ, Ziller JW: Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 1991, 10(7):2526-2528.
    39. Feher FJ, Soulivong D, Lewis GT: Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framework. Journal of the American Chemical Society 1997, 119(46):11323-11324.
    40. J. Feher F, Soulivong D, Nguyen F: Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R8Si8O12 framework. Chemical Communications 1998(12):1279-1280.
    41. Feher FJ, Nguyen F, Soulivong D, Ziller JW: A new route to incompletely condensed silsesquioxanes: Acid-mediated cleavage and rearrangement of (c-C6H11)6Si6O9 to C2-[(c-C6H11)6Si6O8X2]. Chemical Communications 1999(17):1705-1706.
    42. Feher FJ, Terroba R, Ziller JW: Base-catalyzed cleavage and homologation of polyhedral oligosilsesquioxanes. Chemical Communications 1999(21):2153-2154.
    43. Marcolli C, Calzaferri G: Monosubstituted octasilasesquioxanes. Applied Organometallic Chemistry 1999, 13(4):213-226.
    44. Martynova TN, Chupakhina TI: Heterofunctional oligoorganylsilsesquioxanes. Journal of Organometallic Chemistry 1988, 345(1-2):10-18.
    45. Calzaferri G, Imhof R: Dalton communications. Synthesis of the first organometallic monosubstituted octanuclear silasesquioxane. Journal of the Chemical Society, Dalton Transactions 1992(23):3391-3392.
    46. Auner N, Bats JW, Katsoulis DE, Suto M, Tecklenburg RE, Zank GA: Chemistry of hydrogen-octasilsesquioxane: Preparation and characterization of octasilsesquioxane-containing polymers. Chemistry of Materials 2000, 12(11):3402-3418.
    47. Zheng L, Farris RJ, Coughlin EB: Novel polyolefin nanocomposites: Synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2001, 34(23):8034-8039.
    48. Zheng L, Kasi RM, Farris RJ, Coughlin EB: Synthesis and thermal properties of hybrid copolymers of syndiotactic polystyrene and polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part A: Polymer Chemistry 2002, 40(7):885-891.
    49. Tsuchida A, Bolln C, Sernetz FG, Frey H, Mulhaupt R: Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. Macromolecules 1997, 30(10):2818-2824.
    50. Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD: Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers. Macromolecules 1999, 32(4):1194-1203.
    51. Zheng L, Farris RJ, Coughlin EB: Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39(17):2920-2928.
    52. Pyun J, Matyjaszewski K: The Synthesis of Hybrid Polymers Using Atom Transfer Radical Polymerization:  Homopolymers and Block Copolymers from Polyhedral Oligomeric Silsesquioxane Monomers. Macromolecules 1999, 33(1):217-220.
    53. Costa ROR, Vasconcelos WL, Tamaki R, Laine RM: Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules 2001, 34(16):5398-5407.
    54. Haddad TS, Lichtenhan JD: Hybrid Organic−Inorganic Thermoplastics:  Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers. Macromolecules 1996, 29(22):7302-7304.
    55. Lichtenhan JD, Otonari YA, Carr MJ: Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers. Macromolecules 1995, 28(24):8435-8437.
    56. Phillips SH, Haddad TS, Tomczak SJ: Developments in nanoscience: Polyhedral oligomeric silsesquioxane (POSS)-polymers. Current Opinion in Solid State and Materials Science 2004, 8(1):21-29.
    57. Lee YJ, Huang JM, Kuo SW, Lu JS, Chang FC: Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 2005, 46(1):173-181.
    58. Leu CM, Chang YT, Wei KH: Polyimide-side-chain tethered polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric film applications. Chemistry of Materials 2003, 15(19):3721-3727.
    59. Leu CM, Reddy GM, Wei KH, Shu CF: Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites. Chemistry of Materials 2003, 15(11):2261-2265.
    60. Leu CM, Chang YT, Wei KH: Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via Poss-diamine. Macromolecules 2003, 36(24):9122-9127.
    61. Chiang CL, Ma CCM: Synthesis, characterization, and properties of novel ladderlike phosphorus-containing polysilsesquioxanes. Journal of Polymer Science, Part A: Polymer Chemistry 2003, 41(9):1371-1379.
    62. Sheng YJ, Lin WJ, Chen WC: Network structures of polyhedral oligomeric silsesquioxane based nanocomposites: A Monte Carlo study. Journal of Chemical Physics 2004, 121(19):9693-9701.
    63. Szwarc M: /`Living/' Polymers. Nature 1956, 178(4543):1168-1169.
    64. Otsu T, Yoshida M: Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters. Die Makromolekulare Chemie, Rapid Communications 1982, 3(2):127-132.
    65. Wang J-S, Matyjaszewski K: Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995, 117(20):5614-5615.
    66. Xia J, Matyjaszewski K: Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands. Macromolecules 1997, 30(25):7697-7700.
    67. D. H. Solomon ER, P. Cacioli. In US Patent Volume 4, 581, 429. 1985.
    68. Georges MK, Veregin RPN, Kazmaier PM, Hamer GK: Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26(11):2987-2988.
    69. Veregin RPN, Odell PG, Michalak LM, Georges MK: The Pivotal Role of Excess Nitroxide Radical in Living Free Radical Polymerizations with Narrow Polydispersity. Macromolecules 1996, 29(8):2746-2754.
    70. Barclay G.G. KM, Sinta R.: Polymer Preprint 1997:902.
    71. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G et al: Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31(16):5559-5562.
    72. Goto A, Sato K, Tsujii Y, Fukuda T, Moad G, Rizzardo E, Thang SH: Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 2001, 34(3):402-408.
    73. Tsavalas JG, Schork FJ, De Brouwer H, Monteiro MJ: Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules 2001, 34(12):3938-3946.
    74. Moad G, Rizzardo E, Thang SH: Radical addition-fragmentation chemistry in polymer synthesis. Polymer 2008, 49(5):1079-1131.
    75. Chong BYK, Le TPT, Moad G, Rizzardo E, Thang SH: More versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: the RAFT process. Macromolecules 1999, 32(6):2071-2074.
    76. Moad G, Rizzardo E, Thang SH: Living Radical Polymerization by the RAFT Process—A First Update. Australian Journal of Chemistry 2006, 59(10):669-692.
    77. Moad G, Rizzardo E, Thang SH: Living Radical Polymerization by the RAFT Process. Australian Journal of Chemistry 2005, 58(6):379-410.
    78. Chiefari J, Mayadunne RTA, Moad CL, Moad G, Rizzardo E, Postma A, Thang SH: Thiocarbonylthio Compounds (SC(Z)S−R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules 2003, 36(7):2273-2283.
    79. Chong YK, Krstina J, Le TPT, Moad G, Postma A, Rizzardo E, Thang SH: Thiocarbonylthio Compounds [SC(Ph)S−R] in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R). Macromolecules 2003, 36(7):2256-2272.
    80. Huisgen R: Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angewandte Chemie International Edition in English 1963, 2(11):633-645.
    81. Kolb HC, Finn MG, Sharpless KB: Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition 2001, 40(11):2004-2021.
    82. Fournier D, Hoogenboom R, Schubert US: Clicking polymers: A straightforward approach to novel macromolecular architectures. Chemical Society Reviews 2007, 36(8):1369-1380.
    83. Binder WH, Sachsenhofer R: 'Click' chemistry in polymer and materials science. Macromolecular Rapid Communications 2007, 28(1):15-54.
    84. Binder WH, Sachsenhofer R: 'Click' chemistry in polymer and material science: An Update. Macromolecular Rapid Communications 2008, 29(12-13):952-981.
    85. Becer CR, Hoogenboom R, Schubert US: Click Chemistry beyond Metal-Catalyzed Cycloaddition. Angewandte Chemie International Edition 2009, 48(27):4900-4908.
    86. Lutz JF: 1,3-Dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science. Angewandte Chemie - International Edition 2007, 46(7):1018-1025.
    87. Lowe AB: Thiol-ene "click" reactions and recent applications in polymer and materials synthesis. Polymer Chemistry 2010, 1(1):17-36.
    88. Golas PL, Matyjaszewski K: Marrying click chemistry with polymerization: expanding the scope of polymeric materials. Chemical Society Reviews 2010, 39(4):1338-1354.
    89. Barner-Kowollik C, Inglis AJ: Has click chemistry lead to a paradigm shift in polymer material design? Macromolecular Chemistry and Physics 2009, 210(12):987-992.
    90. Rostovtsev VV, Green LG, Fokin VV, Sharpless KB: A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition 2002, 41(14):2596-2599.
    91. Diaz DD, Punna S, Holzer P, McPherson AK, Sharpless KB, Fokin VV, Finn MG: Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science, Part A: Polymer Chemistry 2004, 42(17):4392-4403.
    92. Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Frechet JMJ, Sharpless KB, Fokin VV: Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angewandte Chemie International Edition 2004, 43(30):3928-3932.
    93. Huisgen R: 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English 1963, 2(10):565-598.
    94. Tornoe CW, Christensen C, Meldal M: Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry 2002, 67(9):3057-3064.
    95. van Berkel SS, Dirks AJ, Meeuwissen SA, Pingen DLL, Boerman OC, Laverman P, van Delft FL, Cornelissen JJLM, Rutjes FPJT: Application of Metal-Free Triazole Formation in the Synthesis of Cyclic RGD–DTPA Conjugates. ChemBioChem 2008, 9(11):1805-1815.
    96. Duxbury CJ, Cummins D, Heise A: Glaser coupling of polymers: Side-reaction in Huisgens “click” coupling reaction and opportunity for polymers with focal diacetylene units in combination with ATRP. Journal of Polymer Science Part A: Polymer Chemistry 2009, 47(15):3795-3802.
    97. Singh I, Zarafshani Z, Lutz J-Fo, Heaney F: Metal-Free “Click” Chemistry: Efficient Polymer Modification via 1,3-Dipolar Cycloaddition of Nitrile Oxides and Alkynes. Macromolecules 2009, 42(15):5411-5413.
    98. Bock VD, Hiemstra H, van Maarseveen JH: CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. European Journal of Organic Chemistry 2006, 2006(1):51-68.
    99. Orgueira HA, Fokas D, Isome Y, Chan PCM, Baldino CM: Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Letters 2005, 46(16):2911-2914.
    100. Fazio F, Bryan MC, Blixt O, Paulson JC, Wong C-H: Synthesis of Sugar Arrays in Microtiter Plate. Journal of the American Chemical Society 2002, 124(48):14397-14402.
    101. Chan TR, Hilgraf R, Sharpless KB, Fokin VV: Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Organic Letters 2004, 6(17):2853-2855.
    102. Markovic E, Ginic-Markovic M, Clarke S, Matisons J, Hussain M, Simon GP: Poly(ethylene glycol)-Octafunctionalized Polyhedral Oligomeric Silsesquioxane:  Synthesis and Thermal Analysis. Macromolecules 2007, 40(8):2694-2701.
    103. Ye Y-S, Chen W-Y, Wang Y-Z: Synthesis and properties of low-dielectric-constant polyimides with introduced reactive fluorine polyhedral oligomeric silsesquioxanes. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44(18):5391-5402.
    104. Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA: Aqueous Dispersions of Single-wall and Multiwall Carbon Nanotubes with Designed Amphiphilic Polycations. Journal of the American Chemical Society 2005, 127(10):3463-3472.
    105. Darcos V, Dureault A, Taton D, Gnanou Y, Marchand P, Caminade A-M, Majoral J-P, Destarac M, Leising F: Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chemical Communications 2004(18):2110-2111.
    106. Zheng Q, Pan C-y: Synthesis and Characterization of Dendrimer-Star Polymer Using Dithiobenzoate-Terminated Poly(propylene imine) Dendrimer via Reversible Addition-Fragmentation Transfer Polymerization. Macromolecules 2005, 38(16):6841-6848.
    107. Li C, Benicewicz BC: Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition−Fragmentation Chain Transfer Polymerization. Macromolecules 2005, 38(14):5929-5936.
    108. Li C, Han J, Ryu CY, Benicewicz BC: A Versatile Method To Prepare RAFT Agent Anchored Substrates and the Preparation of PMMA Grafted Nanoparticles. Macromolecules 2006, 39(9):3175-3183.
    109. Mayadunne RTA, Jeffery J, Moad G, Rizzardo E: Living Free Radical Polymerization with Reversible Addition−Fragmentation Chain Transfer (RAFT Polymerization):  Approaches to Star Polymers. Macromolecules 2003, 36(5):1505-1513.
    110. Fox TG, Flory PJ: Second-Order Transition Temperatures and Related Properties of Polystyrene. I. Influence of Molecular Weight. Volume 21: AIP; 1950.
    111. FOX TG: Bull Am Phys Soc 1956, 1:123.

    無法下載圖示 全文公開日期 2016/08/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE