簡易檢索 / 詳目顯示

研究生: 曾俊儒
Jiun-Ru Tzeng
論文名稱: 利用點擊化學將聚丙烯晴接枝到矽晶片表面上形成圖案化
Grafting polyacrylonitrile to silicon surface with click reaction as patterns
指導教授: 陳建光
Jem-Kun Chen
口試委員: 邱顯堂
Hsien-Tang Chiu
李俊毅
jin-yi li
柯富祥
fu-siang ke
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 128
中文關鍵詞: 原子轉移自由基聚合法點擊化學聚丙烯腈高分子刷
外文關鍵詞: Atom Transfer Radical Polymerization, Click chemistry, polyacrylonitrile, polymer brushes
相關次數: 點閱:466下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是藉由原子轉移自由基聚合法 ( Atom Transfer Radical
    Polymerization,ATRP ) ,聚合出末端帶有炔端的聚丙烯腈高分子
    (Propargyl-PAN ) 及將矽晶片改質為疊氮層,再將Propargyl-PAN與晶
    片表面上的疊氮層經由銅催化炔-疊氮環化加成反應( Copper-catalyzed
    Azide-Alkyne Cycloaddition,CuAAC;點擊化學,Click Chemistry ) ,
    將 Propargyl-PAN 高分子接枝於矽晶片表面上。PAN 高分子刷在氮氣
    環境下經加熱使 PAN 環化交鏈。由 1H NMR 及FTIR光譜之鑑定,
    證明本研究已成功合成出起始劑及 Propargyl-PAN;再經由ESCA 及
    FTIR 光譜之鑑定,證實表面的自組裝層、疊氮層及Propargyl-PAN 高
    分子已成功接枝於矽晶片表面上,以及更近一步證實PAN高分子刷因
    加熱而環化交鏈。在接觸角方面因PAN高分子刷環化交鏈後有較疏水
    的性質(119.2O)。在Propargyl-PAN聚合時間來到24小時,高分子刷
    的厚度為144.08nm。使用SEM 與AFM,分析各製程的表面形貌及表
    面粗糙度。電子束微影在矽晶片上製備出線寬比為1:2(400nm:800nm)
    的正型光阻圖案,將光阻圖案之矽晶片進行自組裝後將光阻移除,即
    可合成圖案化高分子刷。


    In this work, functionalized polymer of Propargyl-PAN
    (polyacrylonitrile) polymerized by Atom Transfer Radical Polymerization
    (ATRP) was grafted to modified silicon wafer with azide group by Click
    chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition, CuAAC), and
    utilized thermal curing with nitrogen flow to form cross-link PAN structure.
    The so-called polymer brushes reached144.08nm in thickness after
    polymerization time of 24 hour. 1H NMR and FTIR spectroscopy
    demonstrated the initiator using in ATRP and Propargyl-PAN had
    synthesized successfully. XPS and FTIR spectroscopy confirmed the
    formation of self-assembly monolayer (SAM) on the silicon wafer and the
    modification of silicon wafer with azide group and demonstrated
    Propargyl-PAN had been grafted to silicon wafer by Click chemistry.
    Furthermore, we demonstrated that PAN transformed from linear to
    cross-link structure via thermal curing. Contact angle showed a more
    hydrophobic characteristic (119.2°) refers to the cross-link structure. With
    SEM and AFM images, we can determine the topography and roughness on
    the surface between different parameters. We prepared a positive type
    photoresist pattern with the width ratio 1:2 (400nm:800nm) on the silicon
    wafer and then removing it after forming the self-assembly monolayer, and
    went further polymerization to get the patterned polymer brushes on the
    silicon wafer.

    中文摘要............................................................. I 英文摘要............................................................ II 目錄................................................................III 圖目錄.............................................................. V 表目錄............................................................. IX 第一章 緒論........................................................ 1 1.1 研究背景..................................................... 1 1.2 研究目的..................................................... 2 第二章 文獻回顧......................................................3 2.1 高分子刷..................................................... 3 2.2 自組裝單分子層............................................... 7 2.3 原子轉移自由基聚合法........................................ 11 2.4 高分子刷的應用.............................................. 19 2.5 點擊化學................................................... 26 2.6 點擊化學反應的應用......................................... 31 2.7 微影製程技術............................................... 35 第三章 儀器原理.....................................................39 3.1 傅立葉轉換紅外光光譜....................................... 39 3.2 液態核磁共振儀............................................. 39 3.3 X 光光電子能譜.............................................. 40 3.4 微差掃描熱卡計............................................. 43 3.5 接觸角量測................................................. 43 3.6 高解析熱電子型場發射掃描式電子顯微鏡....................... 48 3.7 原子力顯微鏡............................................... 49 3.8 電漿蝕刻機 ................................................ 59 3.9 薄膜厚度量測儀............................................. 60 第四章 實驗架構.....................................................62 第五章 實驗部分.....................................................63 5.1 實驗藥品................................................... 63 5.2 實驗儀器................................................... 66 5.3 實驗步驟................................................... 68 5.3.1 Prapargyl-PAN 之製備...................................... 68 5.3.2 矽晶片上接枝高分子刷製備................................. 70 5.3.3 PAN 高分子刷熱交鏈之製備................................. 74 5.3.4 圖案化高分子刷之製備..................................... 74 第六章 結果與討論...................................................83 6.1 Prapargyl-PAN 之結構鑑定................................... 83 6.2 表面高分子刷之結構鑑定..................................... 88 6.3 表面高分子刷之熱交鏈結構鑑定............................... 97 6.4 接觸角之量測分析.......................................... 102 6.5 高分子刷之厚度分析........................................ 104 6.6 SEM 表面型態分析.......................................... 105 6.7 AFM 表面型態分析........................................... 108 6.8 PAN 高分子刷圖案化之結果分析.............................. 116 6.8.1 電子束微影之結果分析.................................... 116 6.8.2 氧電漿處理之結果分析.................................... 117 6.8.3 圖案化 PAN 高分子刷之結果分析........................... 118 第七章 結論........................................................120 第八章 參考文獻....................................................121

    1. Jurgen Ruhe., Matthias Ballauff. , Markus Biesalski., Peter Dziezok., Franziska Grohn., Diethelm Johannsmann., Nikolay Houbenov., Norbert Hugenberg., Rupert Konradi., Sergiy Minko., Michail Motornov., Roland R. Netz., Manfred Schmidt., Christian Seidel., Manfred Stamm., Tim Stephan., Denys Usov., Haining Zhang.,Polyelectrolyte Brushes. Adv Polym Sci . 2004, 165:79–150.
    2. B. Zhao, W.J. Brittain., Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 2000, 25, 677–710.
    3. J_rgen R_he; Matthias Ballauff; Markus Biesalski1; Peter Dziezok; Franziska Gr_hn; Diethelm Johannsmann; Nikolay Houbenov; Norbert Hugenberg; Rupert Konradi1; Sergiy Minko; Michail Motornov; Roland R. Netz; Manfred Schmidt; Christian Seidel; Manfred Stamm; Tim Stephan5 • Denys Usov6 • Haining Zhang, Polyelectrolyte Brushes, Adv Polym Sci (2004) 165:79–150
    4. Jeffrey Pyun., Krzyszt of Matyjaszewski. Synthesis of Nano-Composite Organic/Inorganic Hybrid Materials Using Controlled/“Living” Radical Polymerization. Chem. Mater. 2001, 13, 3436-3448.
    5. Kai Yu; Hanfu Wang; Longjian Xue; and Yanchun Han,Stimuli-Responsive Polyelectrolyte Block Copolymer Brushes Synthesized from the Si Wafer via Atom-Transfer Radical Polymerization, Langmuir 2007, 23, 1443-1452
    6. Fan Xia; Lin Feng; Shutao Wang; Taolei Sunp; Wenlong Song, Wuhui Jiang; and Lei Jiang, Dual-Responsive Surfaces That Switch between Superhydrophilicity and Superhydrophobicity, Adv. Mater. 2006, 18, 432–436
    7. Krzyszt of Matyjaszewski, Jianhui Xia. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 101, 2921-2990.
    8. J. Xue, L. Chen, H. L. Wang, Z. B. Zhang, X. L. Zhu, E. T. Kang, K.G.Neoh. Stimuli-Responsive Multifunctional Membranes of Controllable Morphology from Poly(vinylidenefluoride)-graft-Poly [2-(N,N-dimthylamino) ethyl methacrylate] Prepared via Atom Transfer Radical Polymerization. Langmuir 2008, 24, 14151-14158.
    9. Xiaofeng Sui, Jinying Yuan, Mi Zhou, Jun Zhang, Haijun Yang, Weizhong Yuan, Yen Wei, and Caiyuan Pan. Synthesis of Cellulose- graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules 2008, 9, 2615–2620.
    10. 郭昭輝、謝國煌, 自組裝薄膜技術之發展. 化工技術月刊 2003, 11(3), 216-223.
    11. Bin Zhao, W. J. B., Synthesis of Polystyrene Brushes on Silicate Substrates via Carbocationic Polymerization from Self-Assembled Monolayers. Macromolecules 2000, 33, 342-348
    12. Ralph G. Nuzzo, D. L. A., Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society 1983, 105, 4481-4483.
    13. Marc D. Porter, T. B. B., David L. Allara, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. Journal of the American Chemical Society 1987, 109, 3559-3568.
    14. E. Delamarche, B. M., H. Kang, Thermal Stability of Self-Assembled Monolayers. Langmuir 1994, 10, 4103-4108.
    15. Yu Tai Tao, M. T. L., Shun Chi Chang, Effect of biphenyl and naphthyl groups on the structure of self-assembled monolayers: packing, orientation, and wetting properties. Journal of the American Chemical Society 1993, 115, 9547-9555.
    16. J. B. Brzoska, I. B. A., F. Rondelez, Silanization of Solid Substrates: A Step Toward Reproducibili. Langmuir 1994, 10, 4367-4373.
    17. Dongxia Wu , Y. Y., Xiaohui Cheng, Mixed Molecular Brushes with PLLA and PS Side Chains Prepared by AGET ATRP and Ring-Opening Polymerization. Macromolecules 2006, 39, 7513-7519.
    18. Anthony M. Granville, S. G. B., Bulent Akgun, Synthesis and Characterization of Stimuli-Responsive Semifluorinated Polymer Brushes Prepared by Atom Transfer Radical Polymerization. Macromolecules 2004, 37, 2790-2796.
    19. Himabindu Nandivada,Xuwei Jiang,Joerg Lahann,Adv.Mater.,2007,19,2197
    20. Noo Li Jeon, K. F., Kimberly Branshaw, Ralph G. Nuzzo, Structure and Stability of Patterned Self-Assembled Films of Octadecyltrichlorosilane Formed by Contact Printing. Langmuir 1997, 13, 3382-3391.
    21. Victoria D.Bock,Henk Hiemstra,Jan H.van Maarseveen,Eur.J.Org.Chem.,2006,1,51
    22. Stephen G. Boyes; Anthony M. Granville; Marina Baum; Bulent Akgun; Brian K. Mirous; William J. Brittain, Polymer brushes––surface immobilized polymers, Surface Science 570 (2004) 1–12
    23. HartmuthC.Kolb,M.G.Finn,K,BarrySharpless,Angew.Chem.Int.Ed,2001,40,2004
    24. John E.Moses,Adam D.Moorhouse,Chem.Soc.Rev.,2007,36,1249.
    25. Yu L.Angell,Kevin Burgess,Chem.Soc.Rev.,2007,36,1674.
    26. Peng Wu,Alina K.Feldman,Anne K.Nugent,Craig J,Hawker,Arnulf Scheel,Brigitte Voit,Jeffrey,Jean M.J.Frechet,K.Barry Sharpless,Valery V.Fokin,Angew.Chem.Int.Ed.,2004,43,3928.
    27. Hak-Fun Chow,Kwun-Ngai Lau,Zhihai Ke,Yuting Liang,Chui-Man Lo,Chem.Commun.,2010,46,3437.
    28. Davie Fournier,Richard Hoogenboon,Ulrich S.Schubert,Chem.Soc.Rev.,2007,36,1369.
    29. Neil D. Treat; Neil Ayres; Stephen G. Boyes; William J. Brittain, A Facile Route to Poly(acrylic acid) Brushes Using Atom Transfer Radical Polymerization, Macromolecules 2006, 39, 26-29
    30. Bin Zhao; William J. Brittain; Wensheng Zhou; Stephen Z. D. Cheng, AFM Study of Tethered Polystyrene-b-poly(methyl methacrylate) and Polystyrene-b-poly(methyl acrylate) Brushes on Flat Silicate Substrates, Macromolecules 2000, 33, 8821-8827 8821
    31. Marian Kaholek; Woo-Kyung Lee; Bruce LaMattina; Kenneth C. Caster; Stefan Zauscher, Fabrication of Stimulus-Responsive Nanopatterned Polymer Brushes by Scanning-Probe Lithography, Nano Lett., Vol. 4, No. 2, 2004
    32. Sang J. A.; Marian k.; Woo-Kuing L.; Bruce L.; Thomas H. L.; Stefan Z., Surface-Initiated polymerization on Nanopatterns Fabricated by Electron-Bean Lithography, adv. Mater. 2004, 16, No. 23-24, December 17
    33. Masaya Mitsuishi; Yasushi Koishikawa; Hiroyuki Tanaka; Eriko Sato; Takeshi Mikayama; Jun Matsui; Tokuji Miyashita; Nanoscale Actuation of Thermoreversible Polymer Brushes Coupled with Localized Surface Plasmon Resonance of Gold Nanoparticles, Langmuir 2007, 23, 7472-7474
    34. A.Genua, J. A. Aldunćın, J. A. Pomposo, H. Grande, N. Kehagias, V. Reboud, C. Sotomayor, I. Mondragon, D. Mecerreyes. Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes. Nanotechnology 2007, 18, 215301.
    35. Marc Husemann, Michael Morrison, Didier Benoit, Jane Frommer, C. Mathew Mate, William D. Hinsberg, James L. Hedrick, Craig J. Hawker. Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes. J. Am. Chem. Soc. 2000, 122, 1844-1845
    36. F. J. Xu, Y. Song, Z. P. Cheng, X. L. Zhu, C. X. Zhu, E. T. Kang, K. G. Neoh. Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations. Macromolecules 2005, 38, 6254-6258.
    37. Feng Zhou, Lei Jiang, Weimin Liu, Qunji Xue. Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two- -Step Surface-Initiated Atomic-Transfer Radical Polymerization. Macromol. Rapid Commun. 2004, 25, 1979–1983.
    38. Jun Shan; Jie Chen; Markus Nuopponen; and Heikki Tenhu, Two Phase Transitions of Poly(N-isopropylacrylamide) Brushes Bound to Gold Nanoparticles, Langmuir 2004, 20, 4671-4676
    39. Ryoko Iwata; Piyawan Suk-In; Vipavee P. Hoven; Atsushi Takahara; Kazunari Akiyoshi; and Yasuhiko Iwasaki, Control of Nanobiointerfaces Generated from Well-Defined Biomimetic Polymer Brushes for Protein and Cell Manipulations, Biomacromolecules 2004, 5, 2308-2314
    40. Rong Dong; Sitaraman Krishnan; Barbara A. Baird; Manfred Lindau; Christopher K. Ober, Patterned Biofunctional Poly(acrylic acid) Brushes on Silicon Surfaces, Biomacromolecules 2007, 8, 3082-3092
    41. Jinho Hyun; Hongwei Ma; Pallab Banerjee; Janet Cole; Kenneth Gonsalves; and Ashutosh Chilkoti, Micropatterns of a Cell-Adhesive Peptide on an Amphiphilic Comb Polymer Film, Langmuir 2002, 18, 2975-2979
    42. Rong Dong, Sitaraman Krishnan, Barbara A. Baird, Manfred Lindau, Christopher K. Ober. Patterned Biofunctional Poly- -(acrylic acid) Brushes on Silicon Surfaces. Biomacromolecules 2007, 8, 3082-3092.
    43. Rahul R. Shah, David Merreceyes, Marc Husemann, Ian Rees, Nicholas L. Abbott, Craig J. Hawker, James L. Hedrick. Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules 2000, 33, 597-605.
    44. Hariharasudhan D. Chirra, Dipti Biswal, J. Zach Hilt. Controlled synthesis of responsive hydrogel nanostructures via microcontact printing and ATRP. Polymers for Advanced Technologies , Volume22, lssue6,pages773-780,june2011.
    45. Felix A. Plamper, Alexander Schmalz, Evis Penott-Chang, Markus Drechsler, Arben Jusufi, Matthias Ballauff, Axel H. E. Mller. Synthesis and Characterization of Star-Shaped Poly(N,N- dimethy-laminoethyl methacrylate) and Its Quaternized Ammonium Salts. Macromolecules 2007, 40, 5689-5697.
    46. Alexander S. J Phys 1977,28,977.
    47. de Gennes PG. J Phys 1976,37,1445.
    48. de Gennes PG . Macromolecules 1980,13,1069.
    49. Kopf A, Baschnagel J, Wittmer J, Binder K. Macromolecules 1996,29,1433.
    50. Zajac R, Chakrabati A. Phys Rev 1995,52,6536.
    51. Ejaz M, Tsujii Y, Fukuda T. Polymer 2001, 42,6811.
    52. Biesalski M, R he J. Macromolecules 1999, 32,2309
    53. Biesalski M, R he J Langmuir 2000,16,1943
    54. Delamarche, E., Michel, B., Kang, H., Gerber, C.Thermal Stability of Self-Assemble Monolayers.Langmuir 1994,10,4103-4108.
    55. Deepthi Gopireddy,Scott M. Husson. Room Temperature Growth of Surface-Confined Poly(acrylamide) fromSelf-Assembled Monolayers Using AtomTransfer Radical Polymerization. Macromolecules 2002, 35, 4218-4221.
    56. Byeong Su Kim, Haifeng Gao, Avni A. Argun, Krzyszt of Matyjaszewski, Paula T. Hammond. All-Star Polymer Multilayers as pH-Responsive Nanofilms. Macromolecules 2009, 42, 368-375.
    57. Andrew P. Vogt and Brent S. Sumerlin. An Efficient Route to Macromonomers via ATRP and ClickChemistry. Macromolecules 2006, 39, 5286-5292.
    58. Wim Van Camp , Vanessa Germonpre’ , Laetitia Mespouille , Philippe Dubois ,Eric J. Goethals , Filip E. Du Prez. New poly(acrylic acid) containing segmentedcopolymer structures by combination of ‘‘click” chemistryand atom transfer radical polymerization. Reactive & Functional Polymers 67 (2007) 1168–1180.
    59. Boyd A. Laurent . Scott M. Grayson. An Efficient Route to Well-Defined Macrocyclic Polymers via “Click”Cyclization. J. AM. CHEM. SOC. 2006, 128, 4238-4239.
    60. Brent S. Sumerlin, Nicolay V. Tsarevsky, Guillaume Louche, Robert Y. Lee, Krzysztof Matyjaszewski. Highly Efficient “Click” Functionalization of Poly(3-azidopropylmethacrylate) Prepared by ATRP. Macromolecules 2005, 38, 7540-7545.
    61. Roxana-Viorela Ostaci,Denis Damiron, Simona Capponi,Guillaume Vignaud,Liliane Le’ger, Yves Grohens, Eric Drockenmuller. Polymer Brushes Grafted to “Passivated” Silicon Substrates Using Click Chemistry. Langmuir 2008, 24, 2732-2739.
    62. Nicholas Leventis, Anand Sadekar, Naveen Chandrasekaran, Chariklia Sotiriou-Leventis. Click Synthesis of Monolithic Silicon Carbide Aerogels from Polyacrylonitrile-Coated 3D Silica Networks. Chem. Mater. 2010, 22, 2790–2803.
    63. Di Zhang,Ruby Chung, Amar B. Karki, Feng Li, David P. Young,, Zhanhu Guo.. Magnetic and Magnetoresistance Behaviors of Solvent Extracted Particulate Iron/Polyacrylonitrile Nanocomposites. J. Phys. Chem. C 2010, 114, 212–219.
    64. Mathur, R. B.; Bahl, O. P.; Sivaram, P. Curr. Sci. 1992, 62, 662–669.
    65. Ho Sun Lim, Song Hee Park, Song Hee Koo,‡Young-Je Kwark, Edwin L. Thomas, Youngjin Jeong, Jeong Ho Cho. Superamphiphilic Janus Fabric. Langmuir 2010, 26(24), 19159–19162.
    66. Guy Nesher, Gad Marom, David Avnir. Metal-Polymer Composites: Synthesis and Characterization ofPolyaniline and Other Polymer@ Silver Compositions. Chem. Mater. 2008, 20, 4425–4432 4425.
    67. Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. A. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis .Carbon1995, 33, 1641.
    68. Weidenthaler, C.; Lu, H. A.; Schmidt, W.; Schu‥th, F. X-ray photo -electron spectroscopic studies of PAN-based ordered mesoporous carbons (OMC) .MicroporousMesoporous Mater. 2006, 88, 238.
    69. Rong-Ming Ho, Tzu-Chung Wang, Chu-Chieh Lin, Te-Liang Yu. Mesoporous Carbons from Poly(acrylonitrile)-b- poly (caprolactone) Block Copolymers. Macromolecules 2007, 40, 2814-2821.
    70. Alan E. Luedtke ,Jack W. Timberlake. Effect of Oxidized States of Heteroatoms and of Orthogonal a Systems on Radical Stabilities. J. Org. Chem.1985,50,268-270.
    71. Cheng-Jyun Huang, Feng-Chih Chang. Using Click Chemistry To Fabricate Ultrathin Thermoresponsive Microcapsules through Direct Covalent Layer-by-Layer Assembly. Macromolecules 2009, 42, 5155–5166.
    72. Guangxi Zong,HouChen, RongjunQu,ChunhuaWang,NaiyiJi. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification. Journal o fHazardous Materials. 2011, vol. 186, no1, pp. 614-621.
    73. Jian Xu,Jing Ye,Shiyong Liu. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior. Macromolecules, 2007, 40 (25), pp 9103–9110.
    74. Masataka Kubo, Takeshi Hayashi, Hidenori Kobayashi, Kae Tsuboi, Takahito Itoh. Synthesis of α-Carboxyl, ω-Amino Heterodifunctional Polystyrene and Its Intramolecular Cyclization.Macromolecules, 2009, 42,pp 2940–2948.
    75. Andrew P. Vogt , Brent S. Sumerlin. An Efficient Route to Macromonomers via ATRP and Click Chemistry. Macromolecules 2006, 39, 5286-5292.
    76. Alberto Bolognesi, Francesco Galeotti,Wojciech Mro’z, Valeria Gancheva,Levon Terlemezyan. Towards Semiconducting Graft Copolymers:Switching from ATRP to ‘‘Click’’ Approach. Macromol. Chem. Phys. 2010, 211, 1488–1495.
    77. Rajesh Ranjan , William J. Brittain. Combination of Living Radical Polymerization and Click Chemistry for Surface Modification. Macromolecules 2007, 40, 6217-6223.
    78. kerstin t.wiss.patrick theato.Facilitaing Polymer Conjugation viaCombination of RAFT Polymerzation and Activated Ester Chemistry.JIURNAL OF POLYMER SCIENCE,48,4758-4767(2010)
    79. Valentina Pitto, Brigitte I. Voit, Ton J. A. Loontjens, Rolf A. T. M. van Benthem.. New Star-Branched Poly(acrylonitrile) Architectures:ATRP Synthesis and Solution .Properties. Macromol. Chem. Phys. 2004, 205, 2346–2355.
    80. Guangxi Zong, Hou Chen, Chunhua Wang, Delong Liu, Zhihai Hao. Synthesis of Polyacrylonitrile via ARGET ATRP UsingCCl4 as Initiator. Journal ofAppliedPolymer Science,Vol. 118, 3673–3677 (2010)VC 2010 Wiley Periodicals, Inc.
    81. LING-SHU WAN, HAO LEI, YAO DING, LEI FU, JING LI, ZHI-KANG XU. Linear and Comb-Like Acrylonitrile /N-Isopropyl -acrylamideCopolymers Synthesized by the Combination of RAFT Polymerization and ATRP. Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 47, 92–102 (2009)VC 2008 Wiley Periodicals, Inc.
    82. Krzysztof Matyjaszewski, Seong Mu Jo, Hyun-jong Paik, Devon A. Shipp. An Investigation into the CuX/2,2¢-Bipyridine (X ) Br or Cl) Mediated Atom Transfer Radical Polymerization of Acrylonitrile. Macromolecules 1999, 32, 6431-6438.
    83. Massimo Lazzari ,Oscar Chiantore,2 Raniero Mendichi,3 M. Arturo Lo’pez-Quintela. Synthesis of Polyacrylonitrile-block-Polystyrene Copolymers by Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2005, 206, 1382–1388.
    84. Krzysztof Matyjaszewski,Seong Mu Jo, Hyun-jong Paik, and Scott G. Gaynor.Synthesis of Well-Defined Polyacrylonitrile by Atom Transfer Radical Polymerization.Macromolecules, 1997, 30 (20), pp 6398–6400
    85. Guangwen Cheng, Xiaodong Fan,Wei Tian, Yuyang Liu and Jie Kong. Synthesis of three-arm poly(ethylene glycol) by combination of controlled anionic polymerization and ‘click’ chemistry. Polym Int 2010; 59: 543–551.
    86. Thomas Lummerstorfer , Helmuth Hoffmann. Click Chemistry on Surfaces: 1,3-Dipolar Cycloaddition Reactions of Azide-Terminated Monolayers on Silica. J. Phys. Chem. B 2004, 108, 3963-3966.
    87. Ohta, R.; Lee, K. H.; Saito, N.; Inoue, Y.; Sugimura, H.; Takai, O. Origin of N 1s spectrum in amorphous carbon nitride obtained by X-ray photoelectron spectroscopy.Thin Solid Films 2003, 434, 296.

    無法下載圖示 全文公開日期 2016/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE