簡易檢索 / 詳目顯示

研究生: 蔡和晉
Ho-jin Tsai
論文名稱: 錳元素含量對AA7003鋁合金銲件 銲後熱處理製程影響之研究
A study of Mn content on the post-weld heat treatment processes of AA7003 Weldments
指導教授: 吳翼貽
Ye-Ee Wu
口試委員: 顧鈞豪
Chun-Hao Koo
王朝正
Chaur-Jeng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 99
中文關鍵詞: 錳含量AA7003鋁合金銲件銲後熱處理機械性質
外文關鍵詞: Mn content, AA7003 weldment, post-weld heat treatment, mechanical property
相關次數: 點閱:210下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文係探討錳元素對AA7003鋁合金銲件之銲後熱處理製程的影響。將AA7003鋁合金擠型材試片進行有/無ER5356填料銲接後,再進行銲後AA、T6、T73與RRA等熱處理製程。應用金相組織、掃描式電子顯微鏡、電子微探分析儀與穿透式電子顯微鏡等微觀組織觀察法,及維克氏微硬度、拉伸試驗與應力腐蝕等試驗法,探討錳元素含量對AA7003鋁合金銲件銲後熱處理製程之影響。
研究結果顯示,銲後T6熱處理製程最能提升整體銲件強度;銲後T73熱處理者則為最能提升銲道強度;未經固溶處理之銲後AA熱處理者,由於銲道與母材內之鋅、鎂原子無法有效地相互擴散,影響銲後析出強化效果,顯示固溶處理確能有效地促進鋅、鎂原子在低錳鋁合金內擴散。添加高鎂含量銲條之有填料銲件,可增加形成緻密析出強化物機率,提高析出強化能力而提升銲件強度;惟具有較低之抗應力腐蝕能力。有填料銲道之TEM觀察顯示,經銲後T6熱處理者,因鋅與鎂元素擴散作用,使晶粒內析出緻密之細小η’相,進而提升銲道析出強化能力;經銲後T73熱處理者,在晶粒內析出稀疏之粗大析出物,晶界上無析出帶較寬;經銲後RRA熱處理者,晶粒內析出緻密且細小η’相,晶界上無析出帶有粗大且不連續性η相,其寬度近似於經銲後T73熱處理者。證明銲後RRA熱處理製程,可使銲件兼具高強度及高抗應力腐蝕性。


The objective of this study is to investigate the effects of Mn content on the mechanical properties of AA7003 weldments after various post-weld heat treatment processes. Weldments were prepared w/o ER5356 filler, and were subjected to artificial aging, T6, T73 and RRA heat treatment precesses. Optical metallographic observation, microhardness test, tensile test, EPMA, SEM, SCC test and TEM observation were conducted to characterize the mechanical properties of these heat-treated weldments.
Experimental results show that T73 temper is the most suitable post-weld heat treatment process to produce weldment with right characteristics. Solid solution process can enhance the high inter-diffusion efficiency of Zn and Mg atoms between weld and base metal in low Mn AA7003 aluminum alloy. The Mg content of ER5356 filler metal makes the weld having high probability to precipitate out fine and widely-dispersed particles to improve strength of AA7003 weldments but possessing lower SCC resistance. TEM observations of welds(with filler) after T6 temper showed that relatively large size of η’ precipitates, comparing with the precipitate size of base metal, were observed. Welds after T73 temper, the microstructure is chacterized by the presence of large and scattered precipitates at grain boundary, as well as wide precipitation free zone(PFZ). The microstructure of welds after RRA process is a combination of those produced by T6 and T73 temper, widely-dispersed η’ precipitates inside the grain as well as large and scattered precipitates at grain boundary.

摘要..........................................................I Abstract.....................................................II 目錄.........................................................IV 圖索引......................................................VII 表索引.......................................................IX 表索引.......................................................IX 第一章 前言...................................................1 1.1 研究緣起.................................................1 1.2 研究動機.................................................2 1.3 研究目的.................................................2 第二章 文獻探討...............................................4 2.1 鋁及鋁合金之簡介.........................................4 2.1.1 鋁合金之分類與介紹.....................................4 2.1.2 鋁合金之應力腐蝕性質介紹...............................6 2.2 鋁合金銲接特性 ............................................8 2.2.1 銲條之選擇性...........................................9 2.2.2 鋁合金銲接之缺陷......................................10 2.3 銲後之顯微組織...........................................12 2.3.1 合金成份對銲道性質之影響..............................15 2.3.2 鋁合金煉度(temper)....................................16 2.3.3 銲接熱輸入量..........................................19 2.3.4 鋁合金銲後熱處理......................................20 2.4 鋁合金惰氣鎢極電弧銲之簡介...............................21 2.4.1 銲接電流特性..........................................21 2.4.2 TIG銲接製程參數.......................................23 2.4.3 TIG銲接之優缺點.......................................23 2.5 7000系列鋁合金熱處理....................................24 2.5.1 析出強化之基本原理....................................24 2.5.2 時效析出強化之機制....................................25 2.5.3 析出強化熱處理之程序 ..................................27 2.5.4 熱處理製程之介紹......................................28 2.5.4.1 T6熱處理..........................................28 2.5.4.2 T73熱處理.........................................29 2.5.4.3 RRA熱處理.........................................30 第三章 實驗方法..............................................33 3.1 研究材料之選用..........................................34 3.2 銲接製程................................................34 3.2.1 銲接程序..............................................34 3.2.2 銲接設備..............................................36 3.3 銲後熱處理..............................................36 3.4 金相顯微組織觀察........................................37 3.5 硬度測試................................................38 3.6 拉伸試驗................................................39 3.7 應力腐蝕試驗............................................40 3.8 掃描式電子顯微鏡........................................42 3.9 電子微探分析儀..........................................42 3.10 穿透式電子顯微鏡........................................42 第四章 結果與討論............................................43 4.1 金相組織 ...........................................43 4.1.1 有填料銲件之銲道與熱影響區............................43 4.1.2 無填料銲件之銲道與熱影響區 ........................47 4.2 不同銲後熱處理製程對銲件微硬度之影響....................50 4.2.1 有填料銲件之微硬度結果................................50 4.2.2 無填料銲件之微硬度結果................................52 4.3 拉伸試驗結果............................................54 4.3.1 有填料銲件之抗拉試驗結果分析..........................54 4.3.2 無填料銲件之抗拉試驗結果分析..........................56 4.4 掃描式電子顯微鏡觀察....................................58 4.4.1 有填料銲件破斷面觀察 .................................58 4.4.2 有填料銲道背向散射電子影像............................59 4.4.3 無填料銲件破斷面觀察 ..................................61 4.4.4 無填料銲道背向散射電子影像............................63 4.5 穿透式電子顯微鏡觀察 ..................................64 4.6 電子微探分析儀之成份分析................................70 4.6.1 有填料銲件 ...........................................70 4.6.2 無填料銲件 ...........................................73 4.7 抗應力腐蝕性試驗........................................75 4.7.1 有填料銲件............................................75 4.7.2 無填料銲件............................................76 第五章 結論..................................................78 第六章 建議..................................................79 參考文獻.....................................................80 附錄.........................................................87 作者簡介.....................................................89

1.行政院,邁向二十一世紀產業發展之材料科技策略,全國材料科技會議,第71~107頁,
民國八十三年六月。
2.高全盛,AA7005鋁合金銲後熱處理之研究,國立台灣科技大學機械工程研究所碩士論
文,民國九十二年六月。
3.林昆民,銲條合金成份對AA7005鋁合金擠型材銲後熱處理製程之影響 ,國立台灣科技大
學機械工程研究所碩士論文,民國94年6月。
4.呂明賢、王文樑,「銲接產業概況」,金工雙月刊,第二十六卷第三期,第30~39頁,民
國八十一年五月。
5.D.R. Askeland, The Science and Engineering of Materials, PWS Publishing
Company, pp. 367-370, 1994.
6.B.F. Brown, “Stress Corrosion Cracking of High Strength Steels: The Theory
of Stress Corrosion Cracking in Alloys,” pp. 235-356, 1971.
7.T.D. Burleigh, “The Postulated Mechanism for Stress Corrosion Cracking of
Aluminum Alloys,” Corrosion, Vol. 47, pp. 89-98, 1991.
8.W.H. Cubberly, ASM Handbook, ASM, Vol. 6, pp. 528-536 and 722-739, 1993.
9.王振欽,銲接學,第2-1~14-30、17-1~17-6、25-1~25-11頁,登文書局,民國七十四
年。
10.吳家駒,電銲技術與應用,新太出版社,第194~213頁,民國七十三年十月。
11.KAISER, Welding KAISER Aluminum, 1st Ed., KAISER Aluminum & Chemical
Scales, Inc., pp. 2-7~8-26, 1984.
12.姜志華, 鋁合金電弧銲接及硬軟銲應用技術,徐氏基金會,第3~136頁,民國八十四年
五月。
13.H.B. Cary, Modern Welding Technology, 3rd Ed., Prentice Hall, Inc. pp. 71-
80, 489-492, 1994,.
14.J.A. Pender, Welding, 3rd Ed., McGraw Hill Ryerson, Ltd., pp. 180-191, 1986.
15.AWS, Welding Handbook: Welding Processes, 8th Ed., Vol. 2, pp. 75-89, 1991.
16.S. Kou, Welding Metallurgy, John Wiley & Sons, New York, pp. 129-295, 1987.
17.J.R. Davis, ASM Specialty Handbook: Aluminum and Aluminum Alloys, ASM, pp. 376-419, 1993.
18.ASM, Welding Handbook: Welding, Brazing, and Soldering, ASM, Vol. 6, pp.
528-540,722-739, 1993.
19.L.W. Eastwood, Gases in Non-Ferrous Metals and Alloys, ASM, 1953.
20.S. Kou, and Y. Le, “Grain Structure and Solidification Cracking in
Oscillated Arc Welds of 5052 Aluminum Alloy,” Metall. Trans. 16A, pp. 1345-
1352, 1985.
21.姜志華、蔡金峰, 銲接冶金概論,徐氏出版社,第68-71頁,民國七十六年。
22.D. Altenpohl, Aluminium and Aluminuim Legierungen, Springer Verlag, p. 773,
1965.
23.W. Gruhl, ”The Stress Corrosion Behavior of High Strength Al-Zn-Mg
Alloys,” Aluminium, Vol. 54, pp. 323-325, 1978.
24.W. Gruhl, ”The Stress-Corrosion Behavior of High-Strength Al-Zn-Mg
Alloys,” International Congress on Aluminum Alloys in the Aircraft
Industry, pp. 171-174, 1976.
25.T.H. Sanders, Jr., E.A. Starke, Jr., ” Relationship of Microstructure to
Monotonic and Cyclic Straining of Two Age Hardening Aluminum Alloys,”
Metall. Trans., Vol. 7A, pp. 1407-1418, 1976.
26.A.K. Vasudevan, R.D. Doherty, Aluminum Alloys Contemporary Research and
Applications, Academic Press, Inc., San Diego, pp. 35-170, 1989.
27.D.A. Hardwick, A.W. Thompson, I. M. Bernstein, ”The Effect of Copper
Content and Microsturcture on the Hydrogen Embrittlement of Al-6Zn-2Mg
Alloys,” Metall. Trans., Vol. 14A, pp. 2517-2526, 1983.
28.B. Sarkar, M. Marek and E.A. Starke, Jr., “The Effect of Copper Content
and Heat Treatment on the Stress Corrosion Characteristics of Al-6Zn-2Mg-
XCu Alloys,” Metall. Trans., Vol. 12A, pp. 1939-1943, 1981.
29.Z. Lin, H. Ru, G. Zhao and G. Sun: 10th International Congress on Metallic
Corrosion, Vol. 3, pp. 2369-2378, 1988.
30.F.M. Mazzolani, Aluminum and Aluminum Structure, 2nd Ed., pp. 7-8., 1987.
31.I.J. Polmear, ”The Properties of Commercial Al-Zn-Mg Alloys: Practical
Implications of Trace Additions of Silver,” J. Inst. Metals , Vol. 89, pp.
193-202, 1961.
32.H. Tsubakino, A. Yamamoto and T. Ohnishi, ”Effect of Fe and Si on
Precipitation of 7050 Aluminum Alloys,” International Conference on Thermo-
mechanical Processing of Steels and Other Materials, pp. 1059-1064, 1997.
33.G.E. Metzger, “Some Mechanical Properties of Welds in 6061 Aluminum Alloy
Sheet”, Welding J., Vol. 56, No. 10, pp. 457-469, 1967.
34.M. Nicolas, J.C. Werenskiold, A. Deschamps, F. Bley, F. Livet and J.P.
Simon, “Study of Precipitate Microstructure in the Heat-Affected Zones of
a Welded Al-Zn-Mg Alloy,” Italy, Proceedings of Euromat, Riminy, 2001.
35.R.J. Brungraber and F.G. Nelson, ”Effect of Welding Variables on Aluminum
Alloy Weldments,” Weld. J., Vol.52, No.3, p.97, 1973.
36.T. Ma and G.D. Ouden, ”Softening Behaviour of Al-Zn-Mg Alloys due to
Welding,” Mater. Sci. Eng. A, Vol. 266, No.1, pp. 198-204, 1999.
37.A.Y. Ishchenko and V.O. Chapor, “Weldability of High-Strength Alloys of Al-
Zn-Mg-(Cu) System,” The Paton Welding J., No. 4, pp. 5-10, 2000.
38.W.R. Oates, Welding Handbook, American Welding Society, Vol. 3, pp. 26 and
30-41, 1987.
39.A.O. Kluken and B. Bjorneklett, “A Study of Mechanical Properties for
Aluminum GMA Weldments,” Welding J., pp. 39-44, 1997.
40.王宜達, 7005鋁擠型與5083鋁合金銲接件機械性質研究,國立台灣科技大學機械工程
研究所碩士論文,民國八十九年。
41.K. Hirano, R.P. Agarwala, M. Cohen, “Diffusion of Iron, Nickel and Cobalt
in Aluminum,” Acta Metallurgica, Vol. 10, Issue 9, pp. 857-863, 1962.
42.D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys,
2nd Ed., Chapman & Hall, p. 304, 1992.
43.J.J. Thompson, E.S. Tankins and V.S. Agarwala, “ A Heat Treatment for
Reducing Corrosion and Stress Corrosion Cracking Susceptibilities in 7xxx
Aluminum Alloys,” Materials Performance, Vol. 26, pp. 45-52, 1987.
44.V. Hansen, L.K. Berg, M. Knutson-Wedel, K. Stiller, “Energy Filter
Electron Diffraction and Atom Probe Investigation of Artificial Ageing in
an Al-Zn-Mg Alloy,” Proceedings of Electron Microscopy, Mexico, pp. 161-
162, 1998.
45.L.K. Berg, J. Gjonnes, “GP-Zones in Al-Zn-Mg Alloys and Their Role in
Artificial Aging,” Acta mater., Vol. 49, pp. 3443-3451, 2001.
46.J.K. Park and A.J. Ardell, “Microstructures of the Commercial 7075 Al
Alloys in the T651 and T7 Tempers,” Metallurgical Transaction A, Vol. 14A,
pp. 1957-1965, 1983.
47.M.O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys,”
Metallurgical Transaction A, Vol. 6A, pp. 631-642, 1975.
48.L.F. Mondolfo, Aluminum Alloys: Structure and Properties Part 4, Butter
Worths, pp. 844-848, 1976.
49.T. Engdahl, V. Hansen, P.J. Warren and K. Stiller, “Investigation of Fine
Scale Precipitates in Al-Zn-Mg Alloys after Various Heat Treatments,”
Materials Science & Engineering A, pp. 59-64, 2002.
50.M. Talianker, B. Cina, “Retrogression and Reaging and the Role of
Dislocations in the Stress Corrosion of 7000-Type Aluminum Alloys,”
Metallurgical Transactions A, Vol. 20A, pp. 2087-2092, 1989.
51.J. Robinson and P. Flynn, “Effects of Thermal Treatments on the Stress
Corrosion Cracking Resistance of Forgings of the Aluminum Alloy 7010,” Key
Engineering Materials, Vol. 99-100, pp. 143-150, 1995.
52.徐煌仁, AA7005鋁合金擠型材熱處理製程之研究 ,國立台灣科技大學機械工程研究所
碩士論文,民國九十一年。
53.柯漢光,7075鋁合金厚板材料RRA熱處理之研究,淡江大學機械工程研究所碩士論文,
民國七十五年.
54.N.C. Danh, K. Rajan, and W. Wallace, “A TEM Study of Microstructural
Changes during Retrogression and Reageing in 7075 Aluminum,” Metall.
Trans. A, Vol. 14A, pp. 1843-1850, 1983.
55.W. Wallace, J.C. Beddoes, M.C. deMalherbe, “A New Approach to the Problem
of Stress Corrosion Cracking in 7075-T6 Aluminum,” Aero. And Space J.,
Vol. 27, pp. 22-23, 1981.
56.M.U. Islam and W. Wallace, “Retrogression and Reaging Response of 7475
Aluminum Alloy,” Met. Technol., Vol. 10, pp. 386-392, 1983.
57.K. Rajan, W. Wallace, J.C. Beddoes,“ Microstructural Study of a High-
Strength Stress-Corrosion Resistant 7075 Aluminum Alloy,” J. of Materials
Science, Vol. 17, p. 2817, 1982.
58.ASM Handbook, Properties and Selection: Nonferrous Alloys and Special-
Purpose Materials, Vol. 2, 1990.
59.中國材料科學學會, 材料手冊-非鐵金屬材料,中國材料科學學會編印,第80頁,
民國七十二年一月。
60.W.R. Oates, Welding Handbook, American Welding Society, Vol. 3, pp 26 and
30-41, 1987.
61.American Welding Society Committee, Structural Welding Code-Aluminum,
American Welding Society, pp. 115-128, 1997.
62.吳翼貽、蔡和晉、林猷貴, 錳元素含量及銲後熱處理製作對中高強度鋁合金銲件機械
性質的影響 ,行政院國家委員會專題報告,民國九十六年。(NSC95-2221-E-011-006)
63.ASM, Metals Handbook: Metallurgy and Microstructure, 9th Ed., Vol. 9, pp.
351-360, 1985.
64.ASTM Standards B557-94, Standard Test Methods of Tension Testing Wrought
and Cast Aluminum and Magnesium Alloy Products, pp. 411-423, 1994.
65.ASTM Standards G39-90, Standard Practice for Preparation and Use of Bent-
Beam Stress-Corrosion Test Specimens, pp. 138-144, 1994.
66.ASTM Standards G103-89, Standard Test Method for Performing a Stress-
Corrosion Test of Low Copper Containing Al-Zn-Mg Alloys in Boiling 6%
Sodium Chloride Solution, pp. 407-410, 1994.
67.L.F. Mondolfo, Aluminum Alloys:Structure and Properties Part 4, Butter
Worths, pp. 836-837, 1976.
68.D.S. Park, S.W. Nam, “Effects of Manganese Dispersoid on the Mechanical
Properties in Al-Zn-Mg Alloys”, J. of Materials Science 30, pp. 1313-1320,
1995.
69.蔡元華、郝斌、楊濱、張濟山、樊建中,錳增韌高強鋁合金的制備及微觀組織,材料熱
處理學報,第69-72頁,民國九十五年。
70.G.E. Metzger, “Some Mechanical Properties of Welds in 6061 Aluminum Alloy
Sheet,” Welding J., Vol. 56, No. 10, pp. 457-469, 1967.
71.R.A. Woods, “Metal Transfer in Aluminum Alloys”, Welding J., Vol. 59, pp.
59-66, 1980.
72.J.C. Werenskiold, A. Deschamps, Y. Bréchet, “Characterization and Modeling
of Precipitation Kinetics in an Al-Zn-Mg Alloy,” Materials Science and
Engineering A, Vol. 293, Issue 1-2, pp. 267-274, 2000.
73.Z. Li, B. Xiong, Y. Zhang, B. Zhu, F. Wang, and H. Liu, “Ageing Behavior
of an Al-Zn-Mg-Cu Alloy Pre-Stretched Thick Plate,” J. of University of
Sci. and Technol., Beijing, Vol. 14, No. 3, p. 246, 2007.

QR CODE