簡易檢索 / 詳目顯示

研究生: Aster Aberra Tessema
Aster Aberra Tessema
論文名稱: 銫鎢青銅基材料於水氣蒸發和光催化應用之研究
Study of Cesium Tungsten Bronze-Based Materials for Steam Generation and Photocatalytic Application
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 郭東昊
Dong-Hao Kuo
蕭育生
Yu-Sheng Hsiao
張淑美
Shu-Mei Chang
張棋榕
Chi-Jung Chang
蘇清淵
Ching-Iuan Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 156
中文關鍵詞: CsxWO3@gC3N4/PVDF纖維膜海水淡化光熱轉化全光譜水分蒸發光催化抗生素陽離子染料陰離子染料
外文關鍵詞: CsxWO3@g-C3N4, fiber membranes, desalination, photothermal conversion, full-spectrum, water evaporation, photocatalysis, antibiotic, cationic and anionic dyes
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

太陽能是一種潔淨、低成本且可持續利用的再生能源。為了解決全球能源危機,太陽能是主要的方案之一。其中利用太陽能驅動的水氣蒸發是極具前景的技術,可以最大限度地獲取太陽光,並為淡水短缺問題提供解決方法。目前光熱材料是太陽能熱轉換器的主要組成部分,在有效的太陽能利用機制中發揮關鍵的作用。在光熱材料中,混合型材料是一種能充分利用太陽能的候選材料。本論文介紹氧化銫鎢複合光熱轉換材料在界面發生水氣蒸發、海水淡化、污水處理和光催化方面的應用。
第一部分,本團隊報導了Cs0.33WO3@gC3N4/PVDF纖維膜在水氣蒸發、海水淡化和污水處理的應用。首先將 Cs0.33WO3@gC3N4/PVDF複合物混摻入PVDF中,並通過溶液靜電紡絲方法紡成纖維膜。研究結果顯示,纖維膜自紫外光、可見光再到遠紅外光區域的全太陽光譜中,皆表現出優異的光熱轉換效率。其中,含有10wt%光熱材料的纖維膜在250nm至2500nm的全光譜太陽光中,達到97.6%的太陽光吸收性能,此結果成功實現利用全太陽光進行光熱轉換的目標。研究結果顯示含有10wt%光熱材料的纖維膜具有優異的光熱轉換效率,在太陽光和近紅外光下達到的最高溫度分別為90℃和85℃,此外還具有出色的抗鹽污染性能,分別為99.9%的鹽離子截留率和95.4%的蒸發效率。據此,電紡纖維膜適用於去除有機染料、四環素和4硝基苯酚等污染物。此優異的性能歸因於PVDF纖維膜的疏水性,能夠在水面和纖維膜之間形成空氣間隙,這種空氣間隙能選擇性地讓水蒸氣進入纖維膜,而有機污染物和鹽離子則透過擴散返回水中,這對進行海水淡化而言至關重要。
在第二部分中,本團隊通過水熱法合成Cs0.33WO3@gC3N4複合材料,並檢驗其對無色抗生素四環素(TC)、恩諾沙星和環丙沙星,以及陽離子、陰離子染料,例如:甲基橙(MO)、羅丹明B(RhB)、中性紅(NR)和亞甲藍(MB),在太陽光下的光降解效果。我們選擇各類廢水汙染物,如陰、陽離子有機染料及無色抗生素等,以研究其對不同廢水的潛在應用。實驗結果表明,Cs0.33WO3@gC3N4通過光催化可去除大多數的汙染物,並表現出優異的光催化活性。在抗生素部分,可去除97%的四環素(TC)、98%的恩諾沙星及97%的環丙沙星;另外在陰、陽離子有機染料部分,可去除98%的亞甲藍(MB)、99%的羅丹明B(RhB)、99% 的中性紅(NR)和95%的甲基橙(MO)。異質結構可增強光催化活性是歸因於擴大光的吸收能力、有效的電荷分離和快速電荷轉移以及高表面積。此外,活性物種檢測實驗也證實了超氧自由基、羥基自由基及電洞,在有機染料和四環素的光催化反應中發揮了效用。由此可知,本研究團隊開發之Cs0.33WO3@gC3N4複合物能作為在全光譜太陽光下去除陰離子、陽離子染料和抗生素的最佳候選材料。
關鍵字:CsxWO3@gC3N4/PVDF纖維膜、海水淡化、光熱轉化、全光譜、水分蒸發、光催化、抗生素、陽離子染料、陰離子染料


Solar energy is clean, low-cost, available, and sustainable renewable energy source. Using solar energy is one of the main solutions for addressing environmental and global energy crisis. Among various kind of energy, photothermal conversion is straight forward and the most effective solar energy utilization for different applications. Using of photothermal material is very crucial for excellent light to thermal conversion efficiency. Among various photothermal conversion material, semiconductor tungsten bronze (MWO3) based materials are promising candidate for converting light to thermal energy under solar light illumination. Herein, the dissertation highlights Cesium Tungsten bronze hybrid material for photothermal conversion applications, interfacial steam generation, sewage water purification, desalination, and photocatalysis of antibiotic and organic pollutant under full solar spectrum.

First section, we reported Cs0.33WO3@g-C3N4/PVDF fiber membranes for the application of photothermal conversion, steam generation, sewage treatment and seawater desalination. Accordingly, Cs0.33WO3@g-C3N4 hybrids incorporated in PVDF by solution electrospinning methods. The as prepared fiber membranes present outstanding light to thermal conversion efficiency from UV-to-VIS-to-NIR region. As the results demonstrate the optimized 10 wt% fiber membranes showed in average 97.6% light absorption across full-spectrum from 250 nm to 2500 nm. The findings presented the highest light to thermal conversion efficiency was achieved with fiber membrane containing 10 wt% of hybrid materials. The highest temperature achieved under solar and Near IR were 90 ℃ and 85 ℃, respectively. These fiber membranes also showed outstanding anti-salt fouling property and it demonstrated 99.9% and 95.4% salt ions rejection and water evaporation efficiency, respectively. Moreover, the electrospun fiber membranes applied for removal of organic dyes, tetracycline and nitrophenol. It exhibited great potential for removal these pollutants. These superior properties were due to the hydrophobicity of fiber membrane, which enables an air gap to be formed between interface of water and fiber membrane. This air gap helps water vapor selectively admits through fiber membrane whereas salt ions and organic pollutants, diffuse to bulk water which is very important for successful seawater desalination.
In second section g-C3N4@Cs0.33WO3 heterojunctions photocatalyst was prepared by a solvothermal method. The photocatalytic activity of as synthesized samples was examined toward photodegradation of colorless antibiotics tetracycline, enrofloxacin, and ciprofloxacin as well as anionic and cation dyes, include methyl orange, rhodamine B, neutral red (NR), and methylene blue under the full-spectrum solar light. Here we have intentionally selected various kinds of wastewater pollutants such as anionic and cationic organic dyes, colorless antibiotics to investigate its potential application toward different groups of water pollutants. The finding revealed that g-C3N4@Cs0.33WO3 hybrid exhibited outstanding photocatalytic activity towards all the pollutants by photo catalytically removing 97% of tetracycline, 98% of enrofloxacin, 97% of ciprofloxacin, 98% of methylene blue, 99% of rhodamine B, 99% of neutral red (NR), and 95% of methyl orange. The enhanced photocatalytic performance of the heterojunction can be ascribed to extended light absorbing ability, effective charge separation, fast charge and high surface area. Moreover, the active species detection experiment also confirmed that superoxide radical, hydroxyl radical, and holes played significant roles in photocatalysis of the organic dyes and tetracycline. Thus. this hybrid is a promising candidate for removal of anionic, cation dyes as well as antibiotics under full-spectrum solar light.

摘要 III Abstract V Acknowledgement VII Table of contents VIII chapter 1: Introduction 1 1.1. Full Spectrum Solar Energy Utilization 1 1.2. Motivation and Objectives of the Study 2 Chapter 2: Back Ground and Literature Review 5 2.1. Fundamental Properties of Tungsten Bronze. 5 2.2. Synthesis of Tungsten Bronzes 5 2.2.1. Solid State Method 5 2.2.2. Hydrothermal Method 5 2.2.3. Solvothermal Method 6 2.2.4. Chemical Vapor Transport 6 2.2.5. Inductively Coupled Thermal Plasma 6 2.3. Application of Tungsten Bronze Materials 7 2.3.1. Photochromism 7 2.3.2. Smart Window Coating 8 2.3.3. Photothermal Therapy 9 2.3.4. Water Evaporation 10 2.4. Progress of Solar Driven Water Evaporation 11 2.5. Photothermal Conversion Materials 14 2.5.1. Plasmonic Metal 15 2.5.2. Semiconductors Based Materials 15 2.5.3. Carbon Based 15 2.5.4. Polymer 16 2.5.5. Hybrid Photothermal Conversion Materials 16 2. 6. Advantage of Hybrid Photothermal Conversion Materials 17 2.6.1. Effective Utilization of Full Solar Spectrum 17 2.6.2. Cost Minimization 19 2.6.3. Synergetic Effect 19 2.7. Substrate Materials Properties and Requirement 23 2.8. Structural Design 25 2.8.1. Single-Layer Structure 25 2.8.2. Double Layer Structure 32 2.8.3. Janus Membranes 35 2.8.4. Multi-Layer Structure 42 2.9. Further Application of Interfacial Water Evaporation 44 2.9.1. Water Wave Detection 44 2.9.2. Interfacial Photocatalysis 45 2.9.3. Steam Sterilization 46 2.9.4. Uranium Extraction 47 2.9.5. Deicing 48 2.10. Photocatalysis 49 2.10.1. Organic Pollutants Degraded by Photocatalysis 50 2.10.2. Antibiotics 50 2.10.3. Pesticide 51 2.10.4. Photocatalytic Degradation Mechanisms 52 2.10.5. Active Species Against Pollutants 54 Chapter 3: Highly-Efficient and Salt-Resistant CSXWO3@g-C3N4/PVDF Fiber Membranes for Interfacial Water Evaporation, Desalination, and Sewage Treatment. 55 3.1. Introduction 55 3.2. Materials and Methods 56 3.2.1. Materials 56 3.2.2. Preparation of g-C3N4 56 3.2.3. Preparation of Cs0.33WO3@g-C3N4 56 3.2.4. Preparation of Electrospun Fiber Membranes 57 3.2.5. Solar Evaporation Measurement 57 3.2.6. Solar Wastewater Purification and Desalination 57 3.2.7. Characterization 58 3.3. Result and Discussion 58 3.3.1. Characterization of CsxWO3@g-C3N4 /PVDF Membranes 58 3.3.2. Optical and Photothermal Analysis 65 3.3.3. Thermal Conductivity 68 3.3.4. Photothermal Conversion Measurement 69 3.3.5. Solar Desalination 72 3.3.6. Sewage Water Treatment 75 3.4. Summary of Work 76 Chapter 4: Highly Efficient Solar Light-Driven g-C3N4@Cs0.33WO3 Heterojunction for the Photodegradation of Colorless Antibiotics as well as Cationic and Anionic Organic Dyes 78 4.1. Introduction 78 4.2. Materials and Methods 80 4.2.1 Materials 80 4.2.2. Synthesis of g-C3N4@Cs0.33WO3 Heterojunction 80 4.2.3. Characterizations 81 4.2.4. Photocatalytic Property 81 4.2.5. Photoelectrochemical Measurement 82 4.3. Result and Discussion 82 4.3.1. Characterization of the g-C3N4@Cs0.33WO3 Heterojunction 82 4.3.2. Photoelectrochemical and Optical Analyses 83 4.4. Effect of Operational Parameters on Photocatalytic Property 88 4.4.1. Effect pH on the Photocatalytic Performance 88 4.4.2. Effect of Concentration on Photocatalytic Property 89 4.4.3. Effect of Catalyst Dosage on Photocatalytic Performance 89 4.5. Study of Photocatalytic Activity on Organic Dyes 90 4.6. Photocatalytic Activity on Antibiotics 96 4.7. Identification of Intermediates and Possible Photocatalytic Mechanism 101 4.8. Summary 105 Chapter. 5 Conclusion and Outlook 107 5.1. Conclusion 107 5.2. Outlook 108 Reference 110

1. Pakdel, M. J. V.; Sohrabi, F.; Mohammadi-Ivatloo, B. J. Multi-objective optimization of energy and water management in networked hubs considering transactive energy. Cleaner Production, 2020, 266, 121936.
2. Cavusoglu, A.-H.; Chen, X.; Gentine, P.; Sahin, O. Potential for natural evaporation as a reliable renewable energy resource. Nature communications, 2017, 8 (1), 1-9.
3. Wilson, H. M.; AR, S. R.; Parab, A. E.; Jha, N. Ultra-low-cost cotton based solar evaporation device for seawater desalination and waste water purification to produce drinkable water, Desalination, 2019, 456, 85-96.
4. Liang, H.; Liao, Q.; Chen, N.; Liang, Y.; Lv, G.; Zhang, P.; Lu, B.; Qu, L Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angewandte Chemie, 2019, 58 (52), 19041-19046.
5. Wang, Y.; Wang, C.; Song, X.; Megarajan, S. K.; Jiang, H. J. A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation, Materials Chemistry A, 2018, 6 (3), 963-971.
6. Wu, T.; Lin, Z.; Wu, H.; Zhu, C.; Komiyama, T.; Shi, J.; Liang, R. P., Selective and sensitive adsorption of Au (III) by poly-N-phenylglycine, Separation and Purification Technology, 2022, 287, 120604.
7. Wang, F.; Li, Q.; Xu, D. Recent progress in semiconductor‐based nanocomposite photocatalysts for solar‐to‐chemical energy conversion, Advanced Energy Materials, 2017, 7 (23), 1700529.
8. Kumar, S.; Kaushik, R.; Purohit, L. J. Novel ZnO tetrapod-reduced graphene oxide nanocomposites for enhanced photocatalytic degradation of phenolic compounds and MB dye, Molecular Liquids, 2021, 327, 114814.
9. Lama, S.-M.; Sinb, J.-C. Zinc Oxide-based nanocomposites for photocatalytic conversion of organic pollutants in water, Nanocomposites for Pollution Control, 2018, 151-152.
10. Imtiaz, F.; Rashid, J.; Xu, M., Semiconductor nanocomposites for visible light photocatalysis of water pollutants. In Concepts of semiconductor photocatalysis, IntechOpen: 2019.
11. Kumar, S.; Kaushik, R.; Purohit, L. J. ZnO-CdO nanocomposites incorporated with graphene oxide nanosheets for efficient photocatalytic degradation of bisphenol A, thymol blue and ciprofloxacin, Hazardous Materials, 2022, 424, 127332.
12. Han, D.; Meng, Z.; Wu, D.; Zhang, C.; Zhu, H. Thermal properties of carbon black aqueous nanofluids for solar absorption, Nanoscale research letters, 2011, 6 (1), 457.
13. Li, B.; Nie, S.; Hao, Y.; Liu, T.; Zhu, J.; Yan, S. J. E. C.; Management, Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage,Energy Conversion and Management ,2015, 98, 314-321.
14. Shinde, P. A.; Jun, S. C. Review on recent progress in the development of tungsten oxide-based electrodes for electrochemical energy storage. ChemSusChem, 2020, 13 (1), 11-38.
15. Chao, L.; Bao, L.; Wei, W.; Tegus, O. A review of recent advances in synthesis, characterization and NIR shielding property of nanocrystalline rare-earth hexaborides and tungsten bronzes, Solar Energy, 2019, 190, 10-27.
16. Huang, W.; El-Sayed, M. A. Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles, European Physical Journal Special Topics, 2008, 153 (1), 325-333.
17. Rattan Paul, D.; Nehra, S. P., P., Graphitic carbon nitride: a sustainable photocatalyst for organic pollutant degradation and antibacterial applications, Environmental Science and Pollution Research, 2021, 28, 3888-3896.
18. Huang, Y.; Ning, L.; Feng, Z.; Ma, G.; Yang, S.; Us, Y.; Hong, Y.; Wang, H.; Peng, L.; Li, J. N., Graphitic carbon nitride nanosheets with low O N1-doping content as efficient photocatalysts for organic pollutant degradation, Environmental Science: Nano,2021, 8 (2), 460-469.
19. Reddy, I. N.; Reddy, L. V.; Jayashree, N.; Reddy, C. V.; Cho, M.; Kim, D.; Shim, J. Vanadium-doped graphitic carbon nitride for multifunctional applications: Photoelectrochemical water splitting and antibacterial activities, Chemosphere, 2021, 264, 128593.
20. Tian, B.; Wu, Y.; Lu, G. Metal-free plasmonic boron phosphide/graphitic carbon nitride with core-shell structure photocatalysts for overall water splitting, Applied Catalysis B: Environmental, 2021, 280, 119410.
21. Wang, Z. L.; Yan, J. M.; Ping, Y.; Wang, H. L.; Zheng, W. T.; Jiang, Q. An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature, Angewandte, 2013, 125 (16), 4502-4505.
22. Kumar, A.; Khanuja, M. Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications, Renewable Energy, 2021, 171, 1246-1256.
23. Luo, Y.; Yan, Y.; Zheng, S.; Xue, H.; Pang, H. J. Graphitic carbon nitride-based materials for electrochemical energy storage, Materials Chemistry A, 2019, 7 (3), 901-924.
24. Wu, M.; Wang, Q.; Sun, Q.; Jena, P. Functionalized graphitic carbon nitride for efficient energy storage, Physical Chemistry C, 2013, 117 (12), 6055-6059.
25. Cometto, C.; Ugolotti, A.; Grazietti, E.; Moretto, A.; Bottaro, G.; Armelao, L.; Di Valentin, C.; Calvillo, L.; Granozzi, G. Applications, Copper single-atoms embedded in 2D graphitic carbon nitride for the CO2 reduction, npj 2D Materials and Applications, 2021, 5 (1), 1-10.
26. Xia, B.; Chu, M.; Wang, S.; Wang, W.; Yang, S.; Liu, C.; Luo, S. Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+, Analytica Chimica Acta,2015, 891, 113-119.
27. Zhao, Y.; Shi, H.; Yang, D.; Fan, J.; Hu, X.; Liu, E., Fabrication of a Sb2MoO6/g-C3N4 Photocatalyst for Enhanced RhB Degradation and H2 Generation. The Journal of Physical Chemistry C 2020, 124 (25), 13771-13778.
28. Lam, S.-M.; Sin, J.-C.; Mohamed, A. R., A review on photocatalytic application of g-C3N4/semiconductor (CNS) nanocomposites towards the erasure of dyeing wastewater. Materials Science in Semiconductor Processing 2016, 47, 62-84.
29. Gu, J.-w.; Guo, R.-t.; Miao, Y.-f.; Liu, Y.-z.; Wu, G.-l.; Duan, C.-p.; Pan, W.-g., Construction of full spectrum-driven CsxWO3/g-C3N4 heterojunction catalyst for efficient photocatalytic CO2 reduction. Applied Surface Science, 2021, 540, 148316.
30. Takeda, H.; Adachi, K. J. Near infrared absorption of tungsten oxide nanoparticle dispersions. American Ceramic Society,2007, 90 (12), 4059-4061.
31. Gu, Z.; Ma, Y.; Zhai, T.; Gao, B.; Yang, W.; Yao, J. A Simple Hydrothermal Method for the Large‐Scale Synthesis of Single‐Crystal Potassium Tungsten Bronze Nanowires, Chemistry–A European, 2006, 12 (29), 7717-7723.
32. Yao, Y.; Zhang, L.; Chen, Z.; Cao, C.; Gao, Y.; Luo, H. Synthesis of CsxWO3 nanoparticles and their NIR shielding properties. Ceramics International, 2018, 44 (12), 13469-13475.
33. Tessema, A. A.; Wu, C.-M.; Motora, K. G.; Naseem, S. Highly-efficient and salt-resistant CsxWO3@ g-C3N4/PVDF fiber membranes for interfacial water evaporation, desalination, and sewage treatment, Composites Science and Technology, 2021, 211, 108865.
34. Hussain, A.; Gruehn, R.; Rüscher, C. J. compounds, Crystal growth of alkali metal tungsten brozes MxWO3 (Mx K, Rb, Cs), and their optical properties, Alloys and compounds, 1997, 246 (1-2), 51-61.
35. Schmidt, P.; Binnewies, M.; Glaum, R.; Schmidt, M. Chemical vapor transport reactions–methods, materials, modeling, Alloys and compounds,2013, 227-305.
36. Gao, T.; Jelle, B. P. Visible-light-driven photochromism of hexagonal sodium tungsten bronze nanorods, Physical Chemistry C, 2013, 117 (26), 13753-13761.
37. Bechinger, C.; Wirth, E.; Leiderer, P. Photochromic coloration of WO3 with visible light, Applied physics letters, 1996, 68 (20), 2834-2836.
38. Gao, T.; Wang, T. Sonochemical synthesis of SnO2 nanobelt/CdS nanoparticle core/shell heterostructures, Chemical communications, 2004, (22), 2558-2559.
39. Lee, S.-H.; Cheong, H. M.; Zhang, J.-G.; Mascarenhas, A.; Benson, D. K.; Deb, S. K. Electrochromic mechanism in a-WO3− y thin films. Applied Physics Letters, 1999, 74 (2), 242-244.
40. Saenger, M.; Honig, T.; Robertson, B. W.; Billa, R.; Hofmann, T.; Schubert, E.; Schubert, M. Polaron and phonon properties in proton intercalated amorphous tungsten oxide thin films, Physical Review B, 2008, 78 (24), 245205.
41. Liang, X.; Guo, C.; Chen, M.; Guo, S.; Zhang, L.; Li, F.; Guo, S.; Yang, H. h., A roll-to-roll process for multi-responsive soft-matter composite films containing Cs x WO 3 nanorods for energy-efficient smart window applications, Nanoscale, 2017, 2 (6), 319-325.
42. Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, Pratt, G. W.; Langer, R. Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology, Nature Reviews Cancer, 2012, 12 (1), 39-50.
43. Eckhardt, B. L.; Francis, P. A. Parker, B. S.; Anderson, R. L. d., Strategies for the discovery and development of therapies for metastatic breast cancer. Nature reviews Drug, 2012, 11 (6), 479-497.
44. Jie, S.; Guo, X.; Ouyang, Z. Tumor ablation using novel photothermal NaxWO3 nanoparticles against breast cancer osteolytic bone metastasis, International Journal of Nanomedicine ,2019, 14, 7353.
45. Naseem, S.;Wu, C.-M.; Chala, T. F. Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation, Solar Energy, 2019, 194, 391-399.
46. Chandrashekara, M.;Yadav, A. Water desalination system using solar heat: A review, A review, Renewable and Sustainable Energy,2017, 67, 1308-1330.
47. Zhang, C.; Liang, H. Q.; Xu, Z. K.; Wang, Z. J. A. S., Harnessing Solar‐Driven Photothermal Effect toward the Water–Energy Nexus, Advanced Science, 2019, 6 (18), 1900883.
48. Emadzadeh, D.; Lau, W. J.; Matsuura, T.; Rahbari-Sisakht, M.; Ismail, A. F. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination, Chemical Engineering Journal, 2014, 237, 70-80.
49. Shannon, M.; Bohn, P.; Elimelech, M.; Georgiadis, J.; Marinas, B.; Mayes, A., Science and technology for water purification in the coming decades. In ‘Nanoscience and technology: a collection of reviews from Nature journals’ (Ed. P. Rodgers) pp. 337–346. World Scientific Publishing: Singapore, Nanoscience and Technology, 2010.
50. Feng, R.; Qiao, Y.; Song, C. A perspective on bio-inspired interfacial systems for solar clean-water generation, MRS Communications, 2019, 9 (1), 3-13.
51. Lin, Y.; Xu, H.; Shan, X.; Di, Y.; Zhao, A.; Hu, Y.; Gan, Z. J. Solar steam generation based on the photothermal effect: from designs to applications, and beyond, Materials Chemistry A, 2019, 7 (33), 19203-19227.
52. Zhang, P.; Liao, Q.; Yao, H.; Huang, Y.; Cheng, H.; Qu, L. Direct solar steam generation system for clean water production, Energy Storage Materials ,2019, 18, 429-446.
53. Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation, Nature energy, 2018, 3 (12), 1031-1041.
54. Otanicar, T. P.; Phelan, P. E.; Prasher, R. S.; Rosengarten, G.; Taylor, Nanofluid-based direct absorption solar collector, Renewable and Sustainable Energy, 2010, 2 (3), 033102.
55. Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC advances, 2017, 7 (32), 19849-19855.
56. Liu, Y.; Chen, J.; Guo, D.; Cao, M.; Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface, ACS Applied Materials & Interfaces, 2015, 7 (24), 13645-13652.
57. Wang, Z.; Ye, Q.; Liang, X.; Xu, J.; Chang, C.; Song, C.; Shang, W.; Wu, J.; Tao, P.; Deng, T. based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun, Materials Chemistry A, 2017, 5 (31), 16359-16368.
58. Zhu, B.; Kou, H.; Liu, Z.; Wang, Z.; Macharia, D. K.; Zhu, M.; Wu, B.; Liu, X.; Chen, Z. Flexible and washable CNT-embedded PAN nonwoven fabrics for solar-enabled evaporation and desalination of seawater, ACS Applied Materials & Interfaces, 2019, 11 (38), 35005-35014.
59. Huang, X.; Yu, Y.-H.; de Llergo, O. L.; Marquez, S. M.; Cheng, Z. Facile polypyrrole thin film coating on polypropylene membrane for efficient solar-driven interfacial water evaporation, RSC a dvances, 2017, 7 (16), 9495-9499.
60. Li, N.; Qiao, L.; He, J. Wang, S.; Yu, L.; Murto, P.; Li, X.; Xu, X. Solar‐driven interfacial evaporation and self‐powered water wave detection based on an all‐cellulose monolithic design, Advanced Functional Materials, 2021, 31 (7), 2008681.
61. Chen, C.; Kuang, Y.; Hu, L. Challenges and opportunities for solar evaporation, Joule, 2019, 3 (3), 683-718.
62. Yan, L.; Yang, X.; Zhang, Y.; Wu, Y.; Cheng, Z.; Darling, S. B.; Shao, L. Porous Janus materials with unique asymmetries and functionality, Materials Today, 2021.
63. Sun, Y.; Zong, X.; Qu, D.; Chen, G.; An, L.; Wang, X.; Sun, Z. J. Water management by hierarchical structures for highly efficient solar water evaporation, Materials Chemistry A, 2021, 9 (11), 7122-7128.
64. Zheng, Z.; Li, H.; Zhang, X.; Jiang, H.; Geng, X.; Li, S.; Tu, H.; Cheng, X.; Yang, P.; Wan, Y. High-absorption solar steam device comprising Au@ Bi2MoO6-CDs: extraordinary desalination and electricity generation, Nano Energy, 2020, 68, 104298.
65. Zong, L.; Li, M.; Li, C. Intensifying solar-thermal harvest of low-dimension biologic nanostructures for electric power and solar desalination, Nano Energy, 2018, 50, 308-315.
66. Wang, Y.; Qi, Q.; Fan, J.; Wang, W.; Yu, D. P., Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation, Separation and Purification Technology, 254, 117615.
67. Motora, K. G.; Wu, C.-M.; Naseem, S. J. Magnetic Recyclable self-floating solar light-driven WO2. 72/Fe3O4 Nanocomposites Immobilized by Janus Membrane for Photocatalysis of Inorganic and Organic Pollutants, Industrial and Engineering Chemistry, 2021.
68. Zhang, Y.; Zhao, D.; Yu, F.; Yang, C.; Lou, J.; Liu, Y.; Chen, Y.; Wang, Z.; Tao, P.; Shang, W. Floating rGO-based black membranes for solar driven sterilization, Nanoscale, 2017, 9 (48), 19384-19389.
69. Xia, Y.; Hou, Q.; Jubaer, H.; Li, Y.; Kang, Y.; Yuan, S.; Liu, H.; Woo, M. W.; Zhang, L.; Gao, L. Spatially isolating salt crystallization from water evaporation for continuous solar steam generation and salt harvesting, Energy & Environmental Science, 2019, 12 (6), 1840-1847.
70. Zhu, M.; Li, Y.; Chen, F.; Zhu, X.; Dai, J.; Li, Y.; Yang, Z.; Yan, X.; Song, J.; Wang, Y. Plasmonic wood for high‐efficiency solar steam generation, Advanced Energy, Materials, 2018, 8 (4), 1701028.
71. Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. 3D self-assembly of aluminum nanoparticles for plasmon-enhanced solar desalination, Nature Photonics, 2016, 10 (6), 393-398.
72. Zhang, L.; Xing, J.; Wen, X.; Chai, J.; Wang, S.; Xiong, Q. Plasmonic heating from indium nanoparticles on a floating microporous membrane for enhanced solar seawater desalination, Nanoscale, 2017, 9 (35), 12843-12849.
73. Wu, C.-M.; Naseem, S.; Chou, M.-H.; Wang, J.-H.; Jian, Y.-Q. Recent advances in tungsten-oxide-based materials and their applications, Frontiers in Materials, 2019, 6, 49.
74. Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles, Advanced Materials, 2017, 29 (3), 1603730.
75. Li, X.; Yao, Z.; Wang, J.; Li, D.; Yu, K.; Jiang, Z. A novel flake-like Cu7S4 solar absorber for high-performance large-scale water evaporation, ACS Applied Energy Materials, 2019, 2 (7), 5154-5161.
76. Cheng, H.; Liu, X.; Zhang, L.; Hou, B.; Yu, F.; Shi, Z.; Wang, X. S., Self-floating Bi2S3/poly (vinylidene fluoride) composites on polyurethane sponges for efficient solar water purification, Solar Energy Materials and Solar Cells, 2019, 203, 110127.
77. Ghim, D.; Jiang, Q.; Cao, S.; Singamaneni, S.; Jun, Y.-S. Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification, Nano energy, 2018, 53, 949-957.
78. Chen, H.; Wu, S.-L.; Wang, H.-L.; Wu, Q.-Y.; Yang, H.-C. S., Photothermal Devices for Sustainable Uses Beyond Desalination, Energy & Environmental Science, 2021, 2 (3), 2000056.
79. Gao, M.; Zhu, L.; Peh, C. K.; Ho, G. W. E., Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy & Environmental Science, 2019, 12 (3), 841-864.
80. Zhu, L.; Gao, M.; Peh, C. K. N.; Wang, X.; Ho, G. W. Self‐contained monolithic carbon sponges for solar‐driven interfacial water evaporation distillation and electricity generation. Advanced Energy Materials, 2018, 8 (16), 1702149.
81. Guo, C.-L.; Miao, E.-D.; Zhao, J.-X.; Liang, L.; Liu, Q. based integrated evaporation device for efficient solar steam generation through localized heating. Solar Energy 2019, 188, 1283-1291.
82. Kim, K.; Yu, S.; An, C.; Kim, S.-W.; Jang, J.-H. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination, ACS Applied Materials & Interfaces, 2018, 10 (18), 15602-15608.
83. Xu, K.; Feng, B.; Zhou, C.; Huang, A. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination, Chemical Engineering Science, 2016, 146, 159-165.
84. Huang, H.-H.; Joshi, R. K.; De Silva, K. K. H.; Badam, R.; Yoshimura, M. J. Fabrication of reduced graphene oxide membranes for water desalination, Membrane Science, 2019, 572, 12-19.
85. Wu, X.; Chen, G. Y.; Zhang, W.; Liu, X.; Xu, H. A plant‐transpiration‐process‐inspired strategy for highly efficient solar evaporation, Advanced sustainable systems, 2017, 1 (6), 1700046.
86. Huang, K. F.; Ma, K. H.; Chang, Y. J.; Lo, L. C.; Jhap, T. Y.; Su, Y. H.; Liu, P. S.; Chueh, S. H. Baicalein inhibits matrix metalloproteinase 1 expression via activation of TRPV 1‐Ca‐ERK pathway in ultraviolet B–irradiated human dermal fibroblasts, Experimental Dermatology, 2019, 28 (5), 568-575.
87. Sui, Y.; Hao, D.; Guo, Y.; Cai, Z.; Xu, B. J. A flowerlike sponge coated with carbon black nanoparticles for enhanced solar vapor generation, Materials Science, 2020, 55 (1), 298-308.
88. Wang, K.; Huang, J.; Wei, Z. Conducting polyaniline nanowire arrays for high performance supercapacitors, Physical Chemistry C, 2010, 114 (17), 8062-8067.
89. Ibrahim, I.; Bhoopal, V.; Sea, D. H.; Afsari, M.; Shon, H. K.; Tijing, L. D. Biomass-based photothermal materials for interfacial solar steam generation: A review, Materials Today, 2021, 100716.
90. Li, Z.; Wei, N.; Zheng, M.; Yao, A.; Xu, R.; Song, X.; Wang, H.; Liu, Q.; Cui, H. Designing a 1D/2D W18O49/rGO heterostructure and constructing a bilayer structure of light absorber for highly efficient steam generation, Powder Technology, 2020, 361, 817-826.
91. Li, Z.; Xu, R.; Wei, N.; Song, X.; Yang, E.; Liu, Q.; Sui, Y.; Cui, H. 3D network structure and hydrophobic Ni-G-WO3-x solar-driven interfacial evaporator for highly efficient steam generation, Solar Energy Materials and Solar Cells, 2020, 217, 110593.
92. Wu, Y.; Shen, L.; Zhang, C.; Gao, H.; Chen, J.; Jinn, L.; Lin, P.; Zhang, H.; Xia, Y. Polyacid doping-enabled efficient solar evaporation of polypyrrole hydrogel, Desalination, 2021, 505, 114766.
93. Xu, J.; Xu, F.; Qian, M.; Li, Z.; Sun, P.; Hong, Z.; Huang, F. Copper nanodot-embedded graphene urchins of nearly full-spectrum solar absorption and extraordinary solar desalination, Nano Energy, 2018, 53, 425-431.
94. Kang, Y.; Li, Z.; Yang, Y.; Su, Z.; Ji, X.; Zhang, S. Antimonene Nanosheets‐Based Z‐Scheme Heterostructure with Enhanced Reactive Oxygen Species Generation and Photothermal Conversion Efficiency for Photonic Therapy of Cancer. Advanced Healthcare Materials, 2021, 10 (3), 2001835.
95. Gan, Q.; Xiao, Y.; Li, C.; Peng, H.; Zhang, T.; Ye, M. g-C3N4/MoS2 based floating solar still for clean water production by thermal/light activation of persulfate, Chemosphere, 2021, 280, 130618.
96. Yang, X.; Yang, Y.; Fu, L.; Zou, M.; Li, Z.; Cao, A.; Yuan, Q. An Ultrathin Flexible 2D Membrane Based on Single‐Walled Nanotube–MoS2 Hybrid Film for High‐Performance Solar Steam Generation. Advanced Functional Materials, 2018, 28 (3), 1704505.
97. Zhu, L.; Sun, L.; Zhang, H.; Yu, D.; Aslan, H.; Zhao, J.; Li, Z.; Yu, M.; Besenbacher, F.; Sun, Y. E., Dual-phase molybdenum nitride Nano rambutans for solar steam generation under one sun illumination, Nano Energy, 2019, 57, 842-850.
98. Ren, P.; Li, J.; Zhang, X.; Yang, X. Highly efficient solar water evaporation of TiO2@ TiN hyperbranched nanowires-carbonized wood hierarchical photothermal conversion material, Materials Today Energy, 2020, 18, 100546.
99. Huang, J.; He, Y.; Chen, M.; Jiang, B.; Huang, Y. Solar evaporation enhancement by a compound film based on Au@ TiO2 core–shell nanoparticles, Solar Energy, 2017, 155, 1225-1232.
100. Naseem, S.; Wu, C.-M.; Motora, K. G. Novel multifunctional RbxWO3@ Fe3O4 immobilized Janus membranes for desalination and synergic-photocatalytic water purification. Desalination, 2021, 517, 115256.
101. Yang, M. Q.; Tan, C. F.; Lu, W.; Zeng, K.; Ho, G. W. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full‐spectrum‐driven photothermal water evaporation and photochemical degradation, Advanced Functional Materials, 2020, 30 (43), 2004460.
102. Qu, W.; Zhao, H.; Zhang, Q.; Xia, D.; Tang, Z.; Chen, Q.; He, C.; Shu, D. Multifunctional Au/Ti3C2 photothermal membrane with antibacterial ability for stable and efficient solar water purification under the full spectrum. ACS Sustainable Chemistry & Engineering,2021, 9 (34), 11372-11387.
103. Li, Y.; Shi, X.-l.; Sun, L.-j.; Zhao, M.; Jiang, T.; Jiang, W.; Deng, M.; Yang, S.; Wang, Y. Composite hydrogel-based photothermal self-pumping system with salt and bacteria resistance for super-efficient solar-powered water evaporation, Desalination, 2021, 515, 115192.
104. Zhou, Y.; Ding, T.; Gao, M.; Chan, K. H.; Cheng, Y.; He, J.; Ho, G. W. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production, Nano Energy, 2020, 77, 105102.
105. Li, L.; Zhang, J. Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@ silicone sponges, Nano Energy, 2021, 81, 105682.
106. Gao, M.; Peh, C. K.; Zhu, L.; Yilmaz, G.; Ho, G. W. Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Advanced Energy Materials,2020, 10 (23), 2000925.
107. Tian, Y.; Yang, H.; Wu, S.; Gong, B.; Xu, C.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. J., High‐performance water purification and desalination by solar‐driven interfacial evaporation and photocatalytic VOC decomposition enabled by hierarchical TiO2‐CuO nanoarchitecture, Energy Reaserch, 2022, 46 (2), 1313-1326.
108. Liu, Y.; Lou, J.; Ni, M.; Song, C.; Wu, J.; Dasgupta, N. P.; Tao, P.; Shang, W.; Deng, T., Bioinspired bifunctional membrane for efficient clean water generation, ACS Applied Materials & Interfaces, 2016, 8 (1), 772-779.
109. Sun, S.; Wang, Y.; Sun, B.; Zhang, F.; Xu, Q.; Mi, H.-Y.; Li, H.; Tao, X.; Guo, Z.; Liu, C. Versatile Janus Composite Nonwoven Solar Absorbers with Salt Resistance for Efficient Wastewater Purification and Desalination, ACS Applied Materials & Interfaces, 2021.
110. Zhao, Q.; Du, C.; Jia, Y.; Yuan, J.; Song, G.; Zhou, X.; Sun, S.; Zhou, C.; Zhao, L.; Yang, S. Solar-powered Janus membrane for one-step conversion of sewage to clean water, Chemical Engineering Journal 2020, 387, 124131.
111. Tao, F.; Zhang, Y.; Yin, K.; Cao, S.; Chang, X.; Lei, Y.; Wang, D.; Fan, R.; Dong, L.; Yin, Y. A plasmonic interfacial evaporator for high-efficiency solar vapor generation. Sustainable Energy & Fuels, 2018, 2 (12), 2762-2769.
112. Chala, T. F.; Wu, C.-M.; Chou, M.-H.; Guo, Z.-L. Melt electrospun reduced tungsten oxide/polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation, ACS Applied Materials & Interfaces, 2018, 10 (34), 28955-28962.
113. Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, Science Advances, 2016, 2 (4), e1501227.
114. Li, C.; Jiang, D.; Huo, B.; Ding, M.; Huang, C.; Jia, D.; Li, H.; Liu, C.-Y.; Liu, J. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination, Nano Energy, 2019, 60, 841-849.
115. Li, Z.; Zheng, M.; Wei, N.; Lin, Y.; Chu, W.; Xu, R.; Wang, H.; Tian, J.; Cui, H. Broadband-absorbing WO3-x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation, Solar Energy Materials and Solar Cells, 2020, 205, 110254.
116. Deng, Z.; Miao, L.; Liu, P.-F.; Zhou, J.; Wang, P.; Gu, Y.; Wang, X.; Cai, H.; Sun, L.; Tanemura, S. Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure Nano Energy, 2019, 55, 368-376.
117. Chang, C.; Liu, M.; Pei, L.; Chen, G.; Wang, Z.; Ji, Y. Porous TiNO solar-driven interfacial evaporator for high-efficiency seawater desalination, AIP Advances, 2021, 11 (4), 045228.
118. Saleem, H.; Trabzon, L.; Kilic, A.; Zaidi, S. J. Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination, Desalination, 2020, 478, 114178.
119. Ma, P. X.; Zhang, R. J. The Japanese Society for Biomaterials, Biomaterials, Synthetic nano‐scale fibrous extracellular matrix, Biomedical Materials Research, 1999, 46 (1), 60-72.
120. Ellison, C. J.; Phatak, A.; Giles, D. W.; Macosko, C. W.; Bates, F. S. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup, Polymer, 2007, 48 (11), 3306-3316.
121. Wu, C.; Chou, M. Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes, Express Polymer Letters, 2020, 14 (2).
122. Wu, C.-M.; Chou, M.-H.; Zeng, W.-Y. Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes, Nanomaterials, 2018, 8 (6), 420.
123. Yang, M. Q.; Tan, C. F.; Lu, W.; Zeng, K.; Ho, G. W. Spectrum Tailored Defective 2D Semiconductor Nanosheets Aerogel for Full‐Spectrum‐Driven Photothermal Water Evaporation and Photochemical Degradation, Advanced Functional Materials, 2020, 2004460.
124. Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; Ajayan, P. M.; Shi, G.; Chen, Y. Graphene-based standalone solar energy converter for water desalination and purification, ACS Nano, 2018, 12 (1), 829-835.
125. Fang, W.; Zhao, L.; Chen, H.; He, X.; Li, W.; Du, X.; Sun, Z.; Zhang, T.; Shen, Y. J. Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation, Energy materials, 2019, 54 (19), 12782-12793.
126. Zhuang, P.; Fu, H.; Xu, N.; Li, B.; Xu, J.; Zhou, L. Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect, Nanophotonic, 2020, 9 (15), 4601-4608.
127. Yin, Z.; Wang, H.; Jian, M.; Li, Y.; Xia, K.; Zhang, M.; Wang, C.; Wang, Q.; Ma, M.; Zheng, Q.-s. Extremely black vertically aligned carbon nanotube arrays for solar steam generation, ACS Applied Materials & Interfaces, 2017, 9 (34), 28596-28603.
128. Zhang, W.-m.; Yan, J.; Su, Q.; Han, J.; Gao, J.-f. J. I., Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance, Colloid and Interface Science, 2022, 612, 66-75.
129. Wang, H.; Du, A.; Ji, X.; Zhang, C.; Zhou, B.; Zhang, Z.; Shen, J. Enhanced photothermal conversion by hot-electron effect in ultra-black carbon aerogel for solar steam generation, ACS Applied Materials & Interfaces, 2019, 11 (45), 42057-42065.
130. Li, H.; He, Y.; Hu, Y.; Wang, X. Commercially available activated carbon fiber felt enables efficient solar steam generation, ACS Applied Materials & Interfaces, 2018, 10 (11), 9362-9368.
131. Chen, A.; Grobmyer, S. R.; Krishna, V. B. Photothermal response of polyhydroxy fullerenes, ACS omega, 2020, 5 (24), 14444-14450.
132. Hou, Z.; Wang, Z.; Wang, P.; Chen, F.; Luo, X. R., Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups, Diamond and Related Materials 2022, 108831.
133. Fan, Y.; Bai, W.; Mu, P.; Su, Y.; Zhu, Z.; Sun, H.; Liang, W.; Li, A., Conductively monolithic polypyrrole 3-D porous architecture with micron-sized channels as superior salt-resistant solar steam generators, Solar Energy Materials and Solar Cells, 2020, 206, 110347.
134. Kim, B.; Kim, J.; Kim, E. Visible to near-IR electrochromic and photothermal effect of poly (3, 4-propylenedioxyselenophene) s. Macromolecules, 2011, 44 (22), 8791-8797.
135. Huang, J. a., Syntheses and applications of conducting polymer polyaniline nanofibers. 2006, 78 (1), 15-27.
136. Srinivasan, S. Y.; Paknikar, K. M.; Gajbhiye, V.; Bodas, D. Magneto‐Conducting Core/Shell Nanoparticles for Biomedical Applications, Pure and applied chemistry, 2018, 4 (2), 151-164.
137. Lin, Z.; Wu, T.; Jia, B.; Shi, J.; Zhou, B.; Zhu, C.; Wang, Y.; Liang, R.; Mizuno, M. Nature-inspired poly (N-phenylglycine)/wood solar evaporation system for high-efficiency desalination and water purification, Colloids and Surfaces A: Physicochemical and Engineering Aspects,
2022, 128272.
138. Zou, Y.; Chen, X.; Guo, W.; Liu, X.; Li, Y. Flexible and robust polyaniline composites for highly efficient and durable solar desalination, ACS Applied Energy Materials, 2020, 3 (3), 2634-2642.
139. Bhattarai, D. P.; Kim, B. S. NIR-Triggered Hyperthermal Effect of Polythiophene Nanoparticles Synthesized by Surfactant-Free Oxidative Polymerization Method on Colorectal Carcinoma Cells, Cells, 2020, 9 (9), 2122.
140. Zhao, X.; Liu, C. Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation. Desalination, 2020, 482, 114385.
141. Xia, Z. J.; Yang, H. C.; Chen, Z.; Waldman, R. Z.; Zhao, Y.; Zhang, C.; Patel, S. N.; Darling, S. B. Porphyrin covalent organic framework (POF)‐Based interface engineering for solar steam generation, Advanced Materials Interfaces, 2019, 6 (11), 1900254.
142. Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation, Chemical science, 2018, 9 (3), 623-628.
143. Chen, P.; Ma, Y.; Zheng, Z.; Wu, C.; Wang, Y.; Liang, G. Facile syntheses of conjugated polymers for photothermal tumour therapy, Nature communications,2019, 10 (1), 1-10.
144. Chen, S.; Ma, D.; Gao, W.; Zhou, S.; Guo, Y.; Pan, Q.; Shuai, Y. Assessments, High efficiency solar steam generator comprising sodium alginate-polydopamine hydrogel for photothermal water sanitation, Sustainable Energy Technologies and Assessments, 2022, 51, 101998.
145. Zeng, Y.; Wang, K.; Yao, J.; Wang, H. Hollow carbon beads for significant water evaporation enhancement, Chemical Engineering Science, 2014, 116, 704-709.
146. Zhou, X.; Li, J.; Liu, C.; Wang, F.; Chen, H.; Zhao, C.; Sun, H.; Zhu, Z., Carbonized tofu as photothermal material for highly efficient solar steam generation, Energy Research, 2020, 44 (11), 9213-9221.
147. Fang, W.; Zhao, L.; He, X.; Chen, H.; Li, W.; Zeng, X.; Chen, X.; Shen, Y.; Zhang, W. Carbonized rice husk foam constructed by surfactant foaming method for solar steam generation, Renewable Energy,2020, 151, 1067-1075.
148. Lin, X.; Chen, J.; Yuan, Z.; Yang, M.; Chen, G.; Yu, D.; Zhang, M.; Hong, W.; Chen, X. J. Integrative solar absorbers for highly efficient solar steam generation, Materials Chemistry A, 2018, 6 (11), 4642-4648.
149. Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelic, D.; Jelenkovic, B.; Zhang, D. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation, ACS Applied Materials & Interfaces, 2019, 12 (2), 2171-2179.
150. Chen, Y.; Shi, Y.; Kou, H.; Liu, D.; Huang, Y.; Chen, Z.; Zhang, B. Self-floating carbonized tissue membrane derived from commercial facial tissue for highly efficient solar steam generation, ACS Sustainable Chemistry & Engineering, 2019, 7 (3), 2911-2915.
151. Cheng, P.; Wang, H.; Wang, H.; van Aken, P. A.; Wang, D.; Schaaf, P. S., High‐Efficiency Photothermal Water Evaporation using Broadband Solar Energy Harvesting by Ultrablack Silicon Structures, Advanced energy and sustainability research, 2021, 2 (4), 2000083.
152. Huang, L.; Ling, L.; Su, J.; Song, Y.; Wang, Z.; Tang, B. Z.; Westerhoff, P.; Ye, R. Laser-engineered graphene on wood enables efficient antibacterial, anti-salt-fouling, and lipophilic-matter-rejection solar evaporation, ACS Applied Materials & Interfaces, 2020, 12 (46), 51864-51872.
153. Nagai, H.; Okazaki, Y.; Chew, S. H.; Misawa, N.; Yamashita, Y.; Akatsuka, S.; Ishihara, T.; Yamashita, K.; Yoshikawa, Y.; Yasui, H. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis, PNAS 2011, 108 (49), E1330-E1338.
154. Jian, H.; Qi, Q.; Wang, W.; Yu, D. A Janus porous carbon nanotubes/poly (vinyl alcohol) composite evaporator for efficient solar-driven interfacial water evaporation, Separation and Purification Technology ,2021, 264, 118459.
155. Zhu, G.; Xu, J.; Zhao, W.; Huang, F. Constructing black titania with unique nanocage structure for solar desalination, ACS Applied Materials & Interfaces, 2016, 8 (46), 31716-31721.
156. Wu, D.; Qu, D.; Jiang, W.; Chen, G.; An, L.; Zhuang, C.; Sun, Z. J. Self-floating nanostructured Ni–NiO x/Ni foam for solar thermal water evaporation, Materials Chemistry A, 2019, 7 (14), 8485-8490.
157. Gao, M.; Peh, C. K.; Phan, H. T.; Zhu, L.; Ho, G. W. Solar Absorber Gel: Localized Macro‐Nano Heat Channeling for Efficient Plasmonic Au Nanoflowers Photothermic Vaporization and Triboelectric Generation, Advanced energy materials, 2018, 8 (25), 1800711.
158. Zou, Y.; Zhao, J.; Zhu, J.; Guo, X.; Chen, P.; Duan, G.; Liu, X.; Li, Y. A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation, ACS Applied Materials & Interfaces, 2021, 13 (6), 7617-7624.
159. Feng, X.; Zhao, J.; Sun, D.; Shanmugam, L.; Kim, J.-K.; Yang, J. J. Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination, Materials Chemistry A, 2019, 7 (9), 4400-4407.
160. Zhou, X.; Zhao, F.; Guo, Y.; Zhang, Y.; Yu, G. A hydrogel-based antifouling solar evaporator for highly efficient water desalination, Materials Chemistry A,2018, 11 (8), 1985-1992.
161. Liang, P.; Liu, S.; Ding, Y.; Wen, X.; Wang, K.; Shao, C.; Hong, X.; Liu, Y. self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination, Chemosphere, 2021, 280, 130719.
162. Wang, Y.; Zhang, L.; Wang, P. Engineering, Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation, ACS Sustainable Chemistry & Engineering, 2016, 4 (3), 1223-1230.
163. Xiong, Z. C.; Zhu, Y. J.; Qin, D. D.; Chen, F. F.; Yang, R. L. Flexible fire‐resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy‐driven water purification, Small, 2018, 14 (50), 1803387.
164. Wang, P.; Gu, Y.; Miao, L.; Zhou, J.; Us, H.; Wei, A.; Mu, X.; Tian, Y.; Shi, J.; Cai, H. Co3O4 nanoforest/Ni foam as the interface heating sheet for the efficient solar-driven water evaporation under one sun. Sustainable Materials and Technologies, 2019, 20, e00106.
165. Song, C.; Li, T.; Guo, W.; Gao, Y.; Yang, C.; Zhang, Q.; An, D.; Huang, W.; Yan, M.; Guo, C. Hydrophobic Cu12 Sb4 S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity, New Journal of chemistry, 2018, 42 (5), 3175-3179.
166. Qin, D.-D.; Zhu, Y.-J.; Chen, F.-F.; Yang, R.-L.; Xiong, Z.-C. Self-floating aerogel composed of carbon nanotubes and ultralong hydroxyapatite nanowires for highly efficient solar energy-assisted water purification. Carbon, 2019, 150, 233-243.
167. Li, T.; Liu, H.; Zhao, X.; Chen, G.; Dai, J.; Pastel, G.; Jia, C.; Chen, C.; Hitz, E.; Siddhartha, D. Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport, Advanced functional materials 2018, 28 (16), 1707134.
168. Shi, L.; Shi, Y.; Zhuo, S.; Zhang, C.; Aldrees, Y.; Aleid, S.; Wang, P. Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation, Nano Energy, 2019, 60, 222-230.
169. Huang, W.; Us, P.; Cao, Y.; Li, C.; Chen, D.; Tian, X.; Su, Y.; Qiao, B.; Tu, J.; Wang, X. Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation, Nano Energy, 2020, 69, 104465.
170. Jin, Y.; Chang, J.; Shi, Y.; Shi, L.; Hong, S.; Wang, P. J. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation, Material Chemistry A, 2018, 6 (17), 7942-7949.
171. Li, Y.; Zhao, M.; Xu, Y.; Chen, L.; Jiang, T.; Jiang, W.; Yang, S.; Wang, Y. J. Manipulating light trapping and water vaporization enthalpy via porous hybrid nanohydrogels for enhanced solar-driven interfacial water evaporation with antibacterial ability, Material Chemistry A, 2019, 7 (47), 26769-26775.
172. Song, L.; Zhang, X.-F.; Wang, Z.; Zheng, T.; Yao, J. Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generationDesalination,2021, 507, 115024.
173. Shen, C.; Zhu, Y.; Xiao, X.; Xu, X.; Chen, X.; Xu, G. Economical salt-resistant superhydrophobic photothermal membrane for highly efficient and stable solar desalination, ACS Applied Materials & Interfaces, 2020, 12 (31), 35142-35151.
174. Zou, Y.; Yang, P.; Yang, L.; Li, N.; Duan, G.; Liu, X.; Li, Y. Boosting solar steam generation by photothermal enhanced polydopamine/wood composites, Polymer, 2021, 217, 123464.
175. Xiao, C.; Liang, W.; Hasi, Q.-M.; Chen, L.; He, J.; Liu, F.; Wang, C.; Sun, H.; Zhu, Z.; Li, A. Ag/polypyrrole co-modified poly (ionic liquid) s hydrogels as efficient solar generators for desalination, Materials Today, 2020, 16, 100417.
176. Song, C.; Jiang, Z.; Gu, X.; Li, H.; Shi, J. Science, I., A bilayer solar evaporator with all-in-one design for efficient seawater desalination, Colloid and Interface Science, 2022, 616, 709-719.
177. Yang, Y.; Fan, W.; Yuan, S.; Tian, J.; Chao, G.; Liu, T. J. A 3D-printed integrated MXene-based evaporator with a vertical array structure for salt-resistant solar desalination, Materials Chemistry A 2021, 9 (42), 23968-23976.
178. Zhu, Y.; Tian, G.; Liu, Y.; Li, H.; Zhang, P.; Zhan, L.; Gao, R.; Huang, C. Low‐Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Water‐Transfer, Advanced science, 2021, 8 (19), 2101727.
179. Xu, K.; Wang, C.; Li, Z.; Wu, S.; Wang, J. Salt mitigation strategies of solar‐driven interfacial desalination Advanced Functional Materials, 2021, 31 (8), 2007855.
180. Xu, Y.; Ma, J.; Han, Y.; Zhang, J.; Cui, F.; Zhao, Y.; Li, X.; Wang, W. Multifunctional CuO nanowire mesh for highly efficient solar evaporation and water purification, ACS Sustainable Chemistry & Engineering, 2019, 7 (5), 5476-5485.
181. Yang, H. C.; Xie, Y.; Hou, J.; Cheetham, A. K.; Chen, V.; Darling, S. B. Janus membranes: creating asymmetry for energy efficiency, Advanced Materials. 2018, 30 (43), 1801495.
182. Yang, H. C.; Hou, J.; Chen, V.; Xu, Z. KJanus membranes: exploring duality for advanced separation, Chemie International Edition, 2016, 55 (43), 13398-13407.
183. Zhang, Y.; Li, T.-T.; Ren, H.-T.; Sun, F.; Lin, Q.; Lin, J.-H.; Lou, C.-W. Tuning the gradient structure of highly breathable, permeable, directional water transport in bi-layered Janus fibrous membranes using electrospinning, RSC advances, 2020, 10 (6), 3529-3538.
184. Zhou, Q.; Li, H.; Li, D.; Wang, B.; Wang, H.; Bai, J.; Ma, S.; Wang, G. J A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation, Colloid and Interface Science, 2021, 592, 77-86.
185. Zhang, Q.; Yi, G.; Fu, Z.; Yu, H.; Chen, S.; Quan, X.., Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance, ACS Nano, 2019, 13 (11), 13196-13207.
186. Wen, B.; Zhang, X.; Yan, Y.; Huang, Y.; Lin, S.; Zhu, Y.; Wang, Z.; Zhou, B.; Yang, S.; Liu, J. Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation, Desalination, 2021, 516, 115228.
187. Zhang, H.; Xie, H.; Han, W.; Yan, X.; Liu, X.; He, L.; Lin, P.; Xia, Y.; Zhang, K.; Zapien, J. A. Graphene Oxide–Reduced Graphene Oxide Janus Membrane for Efficient Solar Generation of Water Vapor. ACS Applied Nano Materials, 2021, 4 (2), 1916-1923.
188. Li, S.; Qiu, F.; Xia, Y.; Chen, D.; Jiao, X. Integrating a Self-Floating Janus TPC@ CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation, ACS Applied Materials & Interfaces, 2022.
189. Wei, C.; Zhang, X.; Ma, S.; Zhang, C.; Li, Y.; Chen, D.; Jiang, H.; Xu, Z.; Huang, X. Ultra-robust vertically aligned three-dimensional (3D) Janus hollow fiber membranes for interfacial solar-driven steam generation with salt-resistant and multi-media purification, Chemical Engineering Journal, 2021, 425, 130118.
190. Wu, S.; Xiong, G.; Yang, H.; Gong, B.; Tian, Y.; Xu, C.; Wang, Y.; Fisher, T.; Yan, J.; Cen, K. Multifunctional solar waterways: plasma‐enabled self‐cleaning nanoarchitectures for energy‐efficient desalination, Advanced Energy, 2019, 9 (30), 1901286.
191. Wang, Q.; Wang, L.; Song, S.; Li, Y.; Jia, F.; Feng, T.; Hu, N Flexible 2D@ 3D Janus evaporators for high-performance and continuous solar desalination, Desalination, 2022, 525, 115483.
192. Li, L.; Zang, L.; Zhang, S.; Dou, T.; Han, X.; Zhao, D.; Zhang, Y.; Sun, L.; Zhang, Y. J. GO/CNT-silica Janus nanofibrous membrane for solar-driven interfacial steam generation and desalination. Taiwan Institute of Chemical Engineers, 2020, 111, 191-197.
193. Yang, Y.; Yang, X.; Fu, L.; Zou, M.; Cao, A.; Du, Y.; Yuan, Q.; Yan, C.-H. Two-dimensional flexible bilayer janus membrane for advanced photothermal water desalination, ACS Energy Letters, 2018, 3 (5), 1165-1171.
194. Gao, S.; Dong, X.; Huang, J.; Dong, J.; Maggio, F. D.; Wang, S.; Guo, F.; Zhu, T.; Chen, Z.; Lai, Y. Bioinspired Soot‐Deposited Janus Fabrics for Sustainable Solar Steam Generation with Salt‐Rejection, Global Challenges, 2019, 3 (8), 1800117.
195. Liu, Z.; Qing, R.-K.; Xie, A.-Q.; Liu, H.; Zhu, L.; Chen, S. Self-contained Janus Aerogel with antifouling and salt-rejecting properties for stable solar evaporation, ACS Applied Materials & Interfaces, 2021, 13 (16), 18829-18837.
196. Go, K.; Bae, K.; Park, K.; Moon, S.; Lee, K. J. Janus black cellulose paper for fast volume reduction of liquid pollutant using solar steam generation, Industrial and Engineering Chemistry, 2021, 94, 166-172.
197. Kim, M.; Yang, K.; Kim, Y. S.; Won, J. C.; Kang, P.; Kim, Y. H.; Kim, B. G. Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer membranes for efficient solar desalination. Carbon, 2020, 164, 349-356.
198. Yao, W.; Li, X.; Zhu, X.; Pei, L.; Liu, G.; Cheng, Y.; Chee, M. O. L.; Dong, P.; Shen, J.; Ye, M. Thermal-localized and salt-resistant polyacrylonitrile/polyvinylidene fluoride aerogel for efficient solar desalination. Desalination,2022, 532, 115751.
199. Zhu, M.; Yu, J.; Ma, C.; Zhang, C.; Wu, D.; Zhu, H. Carbonized daikon for highly efficient solar steam generation, Solar Energy Materials and Solar Cells, 2019, 191, 83-90.
200. Xiao, W.; Yan, J.; Gao, S.; Huang, X.; Luo, J.; Wang, L.; Zhang, S.; Wu, Z.; Lai, X.; Gao, J. Superhydrophobic MXene based fabric composite for high efficiency solar desalination, Desalination, 2022, 524, 115475.
201. Bian, Y.; Du, Q.; Tang, K.; Shen, Y.; Hao, L.; Zhou, D.; Wang, X.; Xu, Z.; Zhang, H.; Zhao, L. Carbonized bamboos as excellent 3D solar vapor‐generation devices, Advanced materials technologies, 2019, 4 (4), 1800593.
202. Li, T.; Fang, Q.; Xi, X.; Chen, Y.; Liu, F. J. Ultra-robust carbon fibers for multi-media purification via solar-evaporation, Material Chemistry A, 2019, 7 (2), 586-593.
203. Wei, N.; Li, Z.; Li, Q.; Yang, E.; Xu, R.; Song, X.; Sun, J.; Dou, C.; Tian, J.; Cui, H. J. I., Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation, Colloid and Interface Science, 2021, 588, 369-377.
204. Gong, F. F.; Li, H.; Wang, W.; Huang, J.; Xia, D. D.; Liao, J.; Wu, M.; Papavassiliou, D. V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification, Nano energy, 2019, 58, 322-330.
205. Guo, Z.; Wang, G.; Ming, X.; Mei, T.; Wang, J.; Li, J.; Qian, J.; Wang, X. PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization, ACS Applied Materials & Interfaces, 2018, 10 (29), 24583-24589.
206. Chen, G.; Li, N.; He, J.; Qiao, L.; Li, F.; Wang, S.; Yu, L.; Murto, P.; Li, X.; Xu, X. J. Design of self-righting steam generators for solar-driven interfacial evaporation and self-powered water wave detection, Material Chemistry A, 2020, 8 (46), 24664-24674.
207. Motora, K. G.; Wu, C.-M.; Chala, T. F.; Chou, M.-H.; Kuo, C.-F. J.; Koinkar, P. Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions. Applied Surface Science,2020, 512, 145618.
208. Zhang, H.; Gao, Y.; Zhu, G.; Li, B.; Gou, J.; Cheng, X. Synthesis of PbS/TiO2 nano-tubes photoelectrode and its enhanced visible light driven photocatalytic performance and mechanism for purification of 4-chlorobenzoic acid, Separation and purification technology, 2019, 227, 115697.
209. Hwang, D. K.; Shul, Y.-G.; Oh, K. Photocatalytic Application of Au–TiO2 Immobilized in Polycarbonate Film, Industrial & Engineering Chemistr, 2013, 52 (50), 17907-17912.
210. Li, J.; Du, M.; Lv, G.; Zhou, L.; Li, X.; Bertoluzzi, L.; Liu, C.; Zhu, S.; Zhu, J. Interfacial solar steam generation enables fast‐responsive, energy‐efficient, and low‐cost off‐grid sterilization, Advanced Materials, 2018, 30 (49), 1805159.
211. Luo, X.; Zhang, J.; Tao, J.; Wang, X.; Zhao, S.; Chen, Z.; Liu, S.; Li, J.; Li, S. Solar-powered “pump” for uranium recovery from seawater, Chemical Engineering Journal, 2021, 416, 129486.
212. Zhang, C.-R.; Cui, W.-R.; Niu, C.-P.; Yi, S.-M.; Liang, R.-P.; Qi, J.-X.; Chen, X.-J.; Jiang, W.; Zhang, L.; Qiu, J.-D. GO-based covalent organic framework hydrogel for synergistically enhance uranium capture capacity through photothermal desalination, Chemical Engineering Journal, 2022, 428, 131178.
213. Lin, Y.; Chen, H.; Wang, G.; Liu, A. Recent progress in preparation and anti-icing applications of superhydrophobic coatings, Coatings, 2018, 8 (6), 208.
214. Karmouch, R.; Ross, G. G. Superhydrophobic wind turbine blade surfaces obtained by a simple deposition of silica nanoparticles embedded in epoxy, Applied Surface Science, 2010, 257 (3), 665-669.
215. Huang, Q. Z.; Liu, J. W.; Zhou, Y.; Liao, Y. J. N. In A Study on De-Icing Technology for Electric Transmission Line, Trans Tech Publ, Advanced Materials Research, 2012; pp 2339-2342.
216. Xie, Z.; Wang, H.; Geng, Y.; Li, M.; Deng, Q.; Tian, Y.; Chen, R.; Zhu, X.; Liao, Q. Interfaces, Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties, ACS Applied Materials & Interfaces, 2021, 13 (40), 48308-48321.
217. Guo, C.; Yin, S.; Dong, Q.; Sato, T. Simple route to (NH4) xWO3 nanorods for near infrared absorption, Nanoscale, 2012, 4 (11), 3394-3398.
218. Qin, W.; Zhang, D.; Zhao, D.; Wang, L.; Zheng, K., Near-infrared photocatalysis based on YF3: Yb3+, Tm3+/TiO2 core/shell nanoparticles, Chemical communications, 2010, 46 (13), 2304-2306.
219. Tang, Y.; Di, W.; Zhai, X.; Yang, R.; Qin, W. NIR-responsive photocatalytic activity and mechanism of NaYF4: Yb, Tm@ TiO2 core–shell nanoparticles, Acs Catalysis, 2013, 3 (3), 405-412.
220. Bloembergen, N. Solid state infrared quantum counters. Acs Catalysis, 1959, 2 (3), 84.
221. Auzel, F. Up conversion and anti-stokes processes with f and d ions in solids, Chemical reviews, 2004, 104 (1), 139-174.
222. Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with up conversion luminescence, Nanoscale, 2012, 4 (18), 5572-5575.
223. Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped up conversion nanocrystals, Chemical Society Reviews, 2009, 38 (4), 976-989.
224. Shan, G.-B.; Asaduddin, H.; Demopoulos, G. P. Enhanced performance of dye-sensitized solar cells by utilization of an external, bifunctional layer consisting of uniform β-NaYF4: Er3+/Yb3+ nanoplatelets, ACS Applied Materials & Interfaces, 2011, 3 (9), 3239-3243.
225. Solís, M.; Solís, A.; Pérez, H. I.; Manjarrez, N.; Flores, M. Microbial de colouration of azo dyes: a review. Polmer 2012, 47 (12), 1723-1748.
226. Mustereţ, C.-P.; Teodosiu, C. M., removal of persistent organic pollutants from textile wastewater by membrane processes. Polmer, 2007, 6 (3).
227. Kishor, R.; Purchase, D.; Saratale, G. D.; Saratale, R. G.; Ferreira, L. F. R.; Bilal, M.; Chandra, R.; Bharagava, R. N. J. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety, Environmental engineering and management, 2021, 105012.
228. Nemiwal, M.; Zhang, T. C.; Kumar, D. Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity, Environmental Chemical Engineering, 2021, 144896.
229. Yang, Y.; Zeng, Z.; Zhang, C.; Huang, D.; Zeng, G.; Xiao, R.; Lai, C.; Zhou, C.; Guo, H.; Xue, W., Construction of iodine vacancy-rich BiOI/Ag@ AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight, Chemical Engineering Journal, 2018, 349, 808-821.
230. Pavithra, K. G.; Kumar, P. S.; Rajan, P. S.; Saravanan, A.; Naushad, M. Sources and impacts of pharmaceutical components in wastewater and its treatment process: A review, Korean Journal of Chemical Engineering, 2017, 34 (11), 2787-2805.
231. Wei, Z.; Liu, J.; Shangguan, W. J. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production, Chinese Journal of Catalysis, 2020, 41 (10), 1440-1450.
232. Dong, S.; Cui, L.; Zhang, W.; Xia, L.; Zhou, S.; Russell, C. K.; Fan, M.; Feng, J.; Sun, J. Double-shelled ZnSnO3 hollow cubes for efficient photocatalytic degradation of antibiotic wastewater, Chemical Engineering Journal, 2020, 384, 123279.
233. Karampela, I.; Dalamaga, M. Could respiratory fluoroquinolones, levofloxacin and moxifloxacin, prove to be beneficial as an adjunct treatment in COVID-19? 2020, Archives of medical research, 51 (7), 741-742.
234. Naeimi, A.; Honarmand, M.; Chaji, M. A.; Khosravi, S. Green synthesis of bentonite/cellulose@ lead oxide bio-nanocomposite with assistance of Pistacia Atlantica extract for efficient photocatalytic degradation of ciprofloxacin, Advanced Powder, 2022, 33 (2), 103441.
235. Ulyankina, A.; Molodtsova, T.; Gorshenkov, M.; Leontyev, I.; Zhigunov, D.; Konstantinova, E.; Lastovina, T.; Tolasz, J.; Henych, J.; Licciardello, N. Photocatalytic degradation of ciprofloxacin in water at nano-ZnO prepared by pulse alternating current electrochemical synthesis, Water Process Engineering, 2021, 40, 101809.
236. Chowdhury, S.; Sikder, J.; Mandal, T.; Halder, G. Comprehensive analysis on sorptive uptake of enrofloxacin by activated carbon derived from industrial paper sludge, Science of The Total Environment, 2019, 665, 438-452.
237. Watkinson, A.; Murby, E.; Costanzo, S. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling, Water Research, 2007, 41 (18), 4164-4176.
238. An, T.; Yang, H.; Li, G.; Song, W.; Cooper, W. J.; Nie, X. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water, Applied Catalysis B: Environmental, 2010, 94 (3-4), 288-294.
239. Liu, X.; Ma, R.; Zhuang, L.; Hu, B.; Chen, J.; Liu, X.; Wang, X. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants, Environmental Science and Technology, 2021, 51 (8), 751-790.
240. Bhowmick, G.; Chakraborty, I.; Ghangrekar, M.; Mitra, A. TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor, Bioresource Technology, 2019, 7, 100303.
241. Sun, S.; Ji, C.; Wu, L.; Chi, S.; Qu, R.; Li, Y.; Lu, Y.; Sun, C.; Xue, Z. Facile one-pot construction of α-Fe2O3/g-C3N4 heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption, Materials Chemistry and Physics, 2017, 194, 1-8.
242. Zhuang, J.; Tian, Q.; Lin, S.; Yang, W.; Chen, L.; Liu, P. Precursor morphology-controlled formation of perovskites CaTiO3 and their photo-activity for as (III) removal, Applied Catalysis B: Environmental, 2014, 156, 108-115.
243. Kidanemariam, A.; Lee, J.; Park, J. Recent innovation of metal-organic frameworks for carbon dioxide photocatalytic reduction, Polymers, 2019, 11 (12), 2090.
244. Chankhanittha, T.; Nanan, S. J. Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvo thermally grown ZnO/Bi2MoO6 heterojunction, Colloid and Interface Science, 2021, 582, 412-427.
245. Li, X.; Bai, Y.; Shi, X.; Su, N.; Nie, G.; Zhang, R.; Nie, H.; Ye, L. Applications of MXene (Ti 3 C2T x) in photocatalysis: a review, Materials Advances, 2021.
246. Vilé, G. Photocatalytic materials and light-driven continuous processes to remove emerging pharmaceutical pollutants from water and selectively close the carbon cycle, Catalysis Science & Technology, 2021, 11 (1), 43-61.
247. Klavarioti, M.; Mantzavinos, D.; Kassinos, D. a. J. Pharmaceuticals and other organic Removal of residual pharmaceuticals from chemicals in selected north-central and aqueous systems by advanced oxidation northwestern Arkansas streams, Environ processes, 2009, 35, 402-17.
248. Liu, X.; Gu, S.; Zhang, X.; Li, X.; Zhao, Y.; Li, W. J., The production discipline and mechanism of hydroxyl radical by investigating the Ln2O3-Bi2MoO6 heterojunction photocatalysts, Alloys and Compounds, 2021, 864, 158894.
249. Yang, C.; Zhang, G.; Meng, Y.; Pan, G.; Ni, Z.; Xia, S. J. Direct Z-scheme CeO2@ LDH core–shell heterostructure for photodegradation of Rhodamine B by synergistic persulfate activation, Hazardous Materials, 2021, 408, 124908.
250. Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.;Ludwig, F.; Masaki, Y.; Schewe, J., Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences, 2014, 111 (9), 3251-3256.
251. Zhu, L.; Gao, M.; Peh, C. K. N.; Ho, G. W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications, Nano Energy, 2019, 57, 507-518.
252. Chua, Y. T.; Lin, C. X. C.; Kleitz, F.; Zhao, X. S.; Smart, S. Nano porous organosilicon membrane for water desalination, Alloys and Compounds, 2013, 49 (40), 4534-4536.
253. Quoilin, S.; Orosz, M.; Hemond, H.; Lemort, V. Performance and design optimization of a low-cost solar organic Rankine cycle for remote power generation, Solar energy. 2011, 85 (5), 955-966.
254. Lin, K.; Xing, J.; Quan, L. N.; de Arquer, F. P. G.; Gong, X.; Lu, J.; Xie, L.; Zhao, W.; Zhang, D.; Yan, C. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent, Nature, 2018, 562 (7726), 245-248.
255. Motora, K. G.; Wu, C.-M.; Xu, T.-Z.; Chala, T. F.; Lai, C.-C. Photocatalytic, antibacterial, and deodorization activity of recycled triacetate cellulose nanocomposites Materials Chemistry and Physics, 2020, 240, 122260.
256. Chala, T. F.; Wu, C.-M.; Chou, M.-H.; Gebeyehu, M. B.; Cheng, K.-B. Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites, Nanomaterials, 2017, 7 (7), 191.
257. Lewis, N. S. Research opportunities to advance solar energy utilization, Science, 2016, 351 (6271).
258. Yan, L.; Yang, X.; Long, J.; Cheng, X.; Pan, D.; Huang, Y.; Shao, L. Universal unilateral electro-spinning/spraying strategy to construct water-unidirectional Janus membranes with well-tuned hierarchical micro/nanostructures, Chemical Communications, 2020, 56 (3), 478-481.
259. Tijing, L. D.; Woo, Y. C.; Johir, M. A. H.; Choi, J.-S.; Shon, H. K. A novel dual-layer bicomponent electrospun nanofibrous membrane for desalination by direct contact membrane distillation, Chemical Engineering, 2014, 256, 155-159.
260. Wu, C.-M.; Chou, M.-H.; Chala, T. F.; Shimamura, Y.; Murakami, R.-i. Infrared-driven poly (vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting. Composites Science and Technology, 2019, 178, 26-32.
261. Zhang, J.; Ma, Z., Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride. Chinese journal of chemical engineering, 2018, 26 (4), 753-760.
262. Li, G.; Guo, C.; Yan, M.; Liu, S., CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Applied Catalysis B: Environmental, 2016, 183, 142-148.
263. Li, G.; Guo, C.; Yan, M.; Liu, S. CsxWO3 nanorods: Realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region, Applied Catalysis B: Environmental, 2016, 183, 142-148.
264. Huang, K.; Hong, Y.; Yan, X.; Huang, C.; Chen, J.; Chen, M.; Shi, W.; Liu, C., Hydrothermal synthesis of gC3N4/CdWO4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light. CrystEngComm, 2016, 18 (34), 6453-6463.
265. Shi, A.; Li, H.; Yin, S.; Zhang, J.; Wang, Y., H2 Evolution over g-C3N4/CsxWO3 under NIR light, Applied Catalysis B: Environmental, 2018, 228, 75-86.
266. Darkwah, W. K.; Ao, Y. Mini review on the structure and properties (photocatalysis), and preparation techniques of graphitic carbon nitride nano-based particle, and its applications, Nano Letter, 2018, 13 (1), 388.
267. Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3− x quantum dots as a light-harvesting material for interfacial water evaporation, Chemical Cumminication, 2017, 53 (50), 6744-6747.
268. Deshmukh, A.; Boo, C.; Karanikola, V.; Lin, S.; Straub, A. P.; Tong, T.; Warsinger, D. M.; Elimelech, M. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges, Energy & Environmental Science, 2018, 11 (5), 1177-1196.
269. Jiang, Z.; Karan, S.; Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis, Advanced Materials, 2018, 30 (15), 1705973.
270. Shi, A.; Li, H.; Yin, S.; Hou, Z.; Rong, J.; Zhang, J.; Wang, Y. Photocatalytic NH3versus H2 evolution over g-C3N4/CsxWO3: O2 and methanol tipping the scale, Applied Catalysis B: Environmental ,2018, 235, 197-206.
271. Lin, Q.; Li, L.; Liang, S.; Liu, M.; Bi, J.; Wu, L. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities, Applied Catalysis B: Environmental, 2015, 163, 135-142.
272. Li, Y.; Li, J.; Zhang, G.; Wang, K.; Wu, X. Selective photocatalytic oxidation of low concentration methane over graphitic carbon nitride-decorated tungsten bronze cesium, ACS Sustainable Chemistry & Engineering, 2019, 7 (4), 4382-4389.
273. Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. J., The preparation of a high performance near-infrared shielding Cs x WO 3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination, Materials Chemistry C, 2015, 3 (31), 8050-8060.
274. Zhang, J.; Ma, Z. Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride Chinese journal of chemical engineering,2018, 26 (4), 753-760.
275. Liu, J.; Ran, S.; Fan, C.; Qiao, Y.; Shi, F.; Yang, J.; Chen, B.; Liu, S. One pot synthesis of Pt-doped CsxWO3 with improved near infrared shielding for energy-saving film applications, Solar Energy, 2019, 178, 17-24.
276. Xu, N.; Li, J.; Wang, Y.; Fang, C.; Li, X.; Wang, Y.; Zhou, L.; Zhu, B.; Wu, Z.; Zhu, S.A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine, Science advances, 2019, 5 (7), eaaw7013.
277. Yu, H.-H.; Yan, L.-J.; Shen, Y.-C.; Chen, S.-Y.; Li, H.-N.; Yang, J.; Xu, Z.-K. Janus poly (vinylidene fluoride) membranes with penetrative pores for photothermal desalination, Journal of research partner, 2020, 2020.
278. Shang, M.; Li, N.; Zhang, S.; Zhao, T.; Zhang, C.; Liu, C.; Li, H.; Wang, Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater, ACS Applied Energy Materials, 2017, 1 (1), 56-61.
279. Fang, Z.; Zhen, Y.-R.; Neumann, O.; Polman, A.; García de Abajo, F. J.; Nordlander, P.; Halas, N., Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle, Nano Letter, 2013, 13 (4), 1736-1742.
280. Wu, T.; Li, H.; Xie, M.; Shen, S.; Wang, W.; Zhao, M.; Mo, X.; Xia, Y. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating, Materials Today Energy, 2019, 12, 129-135.
281. Ming, X.; Guo, A.; Wang, G.; Wang, X. Two-dimensional defective tungsten oxide nanosheets as high-performance photo-absorbers for efficient solar steam generation, Solar Energy Materials and Solar Cells, 2018, 185, 333-341.
282. Yi, L.; Ci, S.; Luo, S.; Shao, P.; Hou, Y.; Wen, Z. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination, Nano Energy, 2017, 41, 600-608.
283. Liu, Y.; Yu, S.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H.; Shang, W.; Tao, P.; Song, C. A bioinspired, reusable, paper‐based system for high‐performance large‐scale evaporation, Advanced materials, 2015, 27 (17), 2768-2774.
284. Tian, L.; Luan, J.; Liu, K.-K.; Jiang, Q.; Tadepalli, S.; Gupta, M. K.; Naik, R. R.; Singamaneni, S. Nano Letter, Plasmonic biofoam: a versatile optically active material. 2016, 16 (1), 609-616.
285. Li, Y.; Cui, X.; Zhao, M.; Xu, Y.; Chen, L.; Cao, Z.; Yang, S.; Wang, Y. J. Facile preparation of a robust porous photothermal membrane with antibacterial activity for efficient solar-driven interfacial water evaporation, Materials Chemistry A, 2019, 7 (2), 704-710.
286. Yu, Z.; Cheng, S.; Li, C.; Sun, Y.; Li, B. Enhancing efficiency of carbonized wood based solar steam generator for wastewater treatment by optimizing the thickness, Solar Energy, 2019, 193, 434-441.
287. Zhang, J.; Yang, Y.; Zhao, J.; Dai, Z.; Liu, W.; Chen, C.; Gao, S.; Golosov, D.; Zavadski, S.; Melnikov, S. Shape tailored Cu2ZnSnS4 nanosheet aggregates for high efficiency solar desalination. Materials Research, 2019, 118, 110529.
288. Li, M.-N.; Sun, X.-F.; Wang, L.; Wang, S.-Y.; Afzal, M. Z.; Song, C.; Wang, S.-G. Forward osmosis membranes modified with laminar MoS2 nanosheet to improve desalination performance and antifouling properties, Desalination,2018, 436, 107-113.
289. Liu, C.; Lee, J.; Ma, J.; Elimelech, M. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer, Environmental science & technology, 2017, 51 (4), 2161-2169.
290. Smith, A. H.; Lopipero, P. A.; Bates, M. N.; Steinmaus, C. M., Arsenic epidemiology and drinking water standards. American Association for the Advancement of Science, Toxicology, 2002.
291. Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. Desalination, 2017, 121 (1), 60-69.
292. Wu, X.; Robson, M. E.; Phelps, J. L.; Tan, J. S.; Shao, B.; Owens, G.; Xu, H. A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy, 2019, 56, 708-715.
293. Bahadur, N.; Bhargava, N. J. Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge, Water Process Engineering, 2019, 32, 100934.
294. Christou, A.; Agüera, A.; Bayona, J. M.; Cytryn, E.; Fotopoulos, V.; Lambropoulou, D.; Manaia, C. M.; Michael, C.; Revit, M.; Schröder, P. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: the knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes–a review. Water Research, 2017, 123, 448-467.
295. Gong, Y.; Wang, Y.; Tang, M.; Zhang, H.; Wu, P.; Liu, C.; He, J.; Jiang, W. J. A two-step process coupling photocatalysis with adsorption to treat tetracycline-Copper (II) hybrid wastewaters, Water Process Engineering, 2022, 47, 102710.
296. Deng, J.; Ge, Y.; Tan, C.; Wang, H.; Li, Q.; Zhou, S.; Zhang, K. Degradation of ciprofloxacin using α-MnO2 activated peroxy monosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation. Chemical Engineering Journal, 2017, 330, 1390-1400.
297. Yu, Y.; Yan, L.; Cheng, J.; Jing, C. Mechanistic insights into TiO2 thickness in Fe3O4@ TiO2-GO composites for enrofloxacin photodegradation. Chemical Engineering Journal, 2017, 325, 647-654.
298. Xu, J.; Hu, C.; Xi, Y.; Wan, B.; Zhang, C.; Zhang, Y. Synthesis and visible light photocatalytic activity of β-AgVO3 nanowires, Solid state sciences, 2012, 14 (4), 535-539.
299. Ming, J.; Liu, N.; Ma, Q.; Sharma, A.; Sun, X.; Kawazoe, N.; Chen, G.; Yang, Y. J Bactericidal process and practicability for environmental water sterilization by solar-light-driven Bi2WO6-based photocatalyst, Water Process Engineering, 2022, 47, 102713.
300. Abilarasu, A.; Kumar, P. S.; Vo, D.-V. N.; Krithika, D.; Ngueagni, P. T.; Joshiba, G. J.; Carolin, C. F.; Prasannamedha, G. J. Enhanced photocatalytic degradation of diclofenac by Sn0.15Mn0.85Fe2O4 catalyst under solar light. Environmental Chemical Engineering,2021, 9 (1), 104875.
301. Gong, J.; Xie, Z.; Wang, B.; Li, Z.; Zhu, Y.; Xue, J.; Le, Z. J. Fabrication of g-C3N4-based conjugated copolymers for efficient photocatalytic reduction of U (Ⅵ), Environmental Chemical Engineering, 2021, 9 (1), 104638.
302. Motora, K. G.; Wu, C.-M.; Chala, T. F.; Chou, M.-H.; Kuo, C.-F. J.; Koinkar, P., Highly efficient photocatalytic activity of Ag3VO4/WO2.72 nanocomposites for the degradation of organic dyes from the ultraviolet to near-infrared regions, Applied Surface Science, 2020, 512, 145618.
303. Bekena, F. T.; Kuo, D.-H.; Kebede, W. L., Universal and highly efficient degradation performance of novel Bi2(O, S)3/Mo (O, S)2 nanocomposite photocatalyst under visible light. Separation and Purification Technology, 2020, 247, 117042.
304. Chen, C.; Li, M.; Jia, Y.; Chong, R.; Xu, L.; Liu, X. J. Surface defect-engineered silver silicate/ceria pn heterojunctions with a flower-like structure for boosting visible light photocatalysis with mechanistic insight, colloid and interface, 2020, 564, 442-453.
305. Ren, X.; Zhang, X.; Guo, R.; Li, X.; Peng, Y.; Zhao, X.; Pu, X. Hollow mesoporous g-C3N4/Ag2CrO4 photocatalysis with direct Z-scheme: Excellent degradation performance for antibiotics and dyes, Separation and Purification Technology, 2021, 270, 118797.
306. Shrisha; Wu, C.-M.; Motora, K. G.; Kuo, D.-H.; Lai, C.-C.; Huang, B.-R.; Saravanan, A., Cesium tungsten bronze nanostructures and their highly enhanced hydrogen gas sensing properties at room temperature. International Journal of Hydrogen Energy, 2021, 46 (50), 25752-25762.
307. Babar, S.; Gavade, N.; Shinde, H.; Gore, A.; Mahajan, P.; Lee, K. H.; Bhuse, V.; Garadkar, K., An innovative transformation of waste toner powder into magnetic g-C3N4-Fe2O3 photocatalyst: Sustainable e-waste management, Journal of Environmental Chemical Engineering, 2019, 7 (2), 103041.
308. Safajou, H.; Khojasteh, H.; Salavati-Niasari, M.; Mortazavi-Derazkola, S., Enhanced photocatalytic degradation of dyes over graphene/Pd/TiO2 nanocomposites: TiO2 nanowires versus TiO2 nanoparticles. Journal of Colloid and Interface Science, 2017, 498, 423-432.
309. Tang, R.; Gong, D.; Deng, Y.; Xiong, S.; Zheng, J.; Li, L.; Zhou, Z.; Su, L.; Zhao, J., π-π stacking derived from graphene-like biochar/g-C3N4 with tunable band structure for photocatalytic antibiotics degradation via peroxymonosulfate activation. Journal of Hazardous Materials, 2022, 423, 126944.
310. Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V., Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 2003, 77 (1), 65-82.
311. Taghavi Fardood, S.; Moradnia, F.; Forootan, R.; Abbassi, R.; Jalalifar, S.Ramazani, A.; Sillanpӓӓ, M., Facile green synthesis, characterization and visible light photocatalytic activity of MgFe2O4@CoCr2O4 magnetic nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry 2022, 423, 113621.
312. Moradnia, F.; Ramazani, A.; Fardood, S. T.; Gouranlou, F., A novel green synthesis and characterization of tetragonal-spinel MgMn2O4 nanoparticles by tragacanth gel and studies of its photocatalytic activity for degradation of reactive blue 21 dye under visible light. Materials Research Express, 2019, 6 (7), 075057.
313. Arabpour, N.; Nezamzadeh-Ejhieh, A., Modification of clinoptilolite nano-particles with iron oxide: Increased composite catalytic activity for photodegradation of cotrimaxazole in aqueous suspension. Materials Science in Semiconductor Processing, 2015, 31, 684-692.
314. Ahmad, M.; Qureshi, M. T.; Rehman, W.; Alotaibi, N. H.; Gul, A.; Abdel Hameed, R. S.; Elaimi, M. A.; Abd el-kader, M. F. H.; Nawaz, M.; Ullah, R., Enhanced photocatalytic degradation of RhB dye from aqueous solution by biogenic catalyst Ag@ZnO. Journal of Alloys and Compounds, 2022, 895, 162636.
315. Palanisamy, G.; Bhuvaneswari, K.; Chinnadurai, A.; Bharathi, G.; Pazhanivel, T. Magnetically recoverable multifunctional ZnS/Ag/CoFe2O4 nanocomposite for sunlight driven photocatalytic dye degradation and bactericidal application. Journal of Physics and Chemistry of Solids 2020, 138, 109231.
316. Singla, S.; Sharma, S.; Basu, S. MoS2/WO3 heterojunction with the intensified photocatalytic performance for decomposition of organic pollutants under the broad array of solar light. Journal of Cleaner Production 2021, 129290323.
317. Samanta, D.; Chanu, T. I.; Basnet, P.; Chatterjee, S. Performance, Organic dye degradation under solar irradiation by hydrothermally synthesized ZnS nanospheres. Journal of Materials Engineering and Performance 2018, 27 (6), 2673-2678.
318. Xiong, T.; Ye, Y.; Luo, B.; Shen, L.; Wang, D.; Fan, M.; Gong, Z. J. Facile fabrication of 3D TiO2-graphene aerogel composite with enhanced adsorption and solar light-driven photocatalytic activity. Ceramics International 2021, 47 (10), 14290-14300.
319. Ji, Z.;Callahan, D. M.; Ismail, M. N.; Warzywoda, J.; Sacco, A., Development and characterization of a titanosilicate ETS-10-coated optical fiber reactor towards the photodegradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry 2011, 217 (1), 22-28.
320. Lu, Q.; Dong, C.; Wei, F.; Li, J.; Wang, Z.; Mu, W.; Han, X. Rational fabrication of Bi2WO6 decorated TiO2 nanotube arrays for photocatalytic degradation of organic pollutants. Materials Research Bulletin 2022, 145, 111563.
321. Cao, J.; Yang, Z.-h.; Xiong, W.-p.; Zhou, Y.-y.; Peng, Y.-r.; Li, X.; Zhou, C.-y.; Xu, R.; Zhang, Y. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis. Chemical Engineering Journal, 2018, 353, 126-137
322. Han, W.; Wu, T.; Wu, Q. I., Fabrication of WO3/Bi2MoO6 heterostructures with efficient and highly selective photocatalytic degradation of tetracycline hydrochloride. Journal of Colloid and Interface Science 2021, 602, 544-552
331. Nasseh, N.; Barikbin, B.; Taghavi, L. Innovation, Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: Efficiency, stability, kinetic and pathway study. Environmental Technology & Innovation 2020, 20, 101035
323. Wang, J.; Zhi, D.; Zhou, H.; He, X.; Zhang, D., Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode, Water Research, 2018, 137, 324-334.
324. Jin, J.; Liu, M.; Feng, L.; Wang, H.; Wang, Y.; Nguyen, T. A.; Wang, Y.; Lu, J.; Li, Y.; Bao, M., 3D Bombax-structured carbon nanotube sponge coupling with Ag3PO4 for tetracycline degradation under ultrasound and visible light irradiation, Science of The Total Environment, 2019, 695, 133694.
325. Manea, Y. K.;Khan, A. M.; Wani, A. A.; Qashqoosh, M. T. A.; Shahadat, M.; Salem, M. A. S., Hydrothermally synthesized mesoporous CS-g-PA@TSM functional nanocomposite for efficient photocatalytic degradation of Ciprofloxacin and treatment of metal ions. Journal of Molecular Liquids, 2021, 335, 116144.
326. Chen, F.; Yang, Q.; Wang, Y.; Yao, F.; Ma, Y.; Huang, X.; Li, X.; Wang, D.; Zeng, G.; Yu, H., Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr (VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism. Chemical Engineering Journal, 2018, 348, 157-170.

無法下載圖示 全文公開日期 2027/09/26 (校內網路)
全文公開日期 2032/09/26 (校外網路)
全文公開日期 2037/09/26 (國家圖書館:臺灣博碩士論文系統)
QR CODE