簡易檢索 / 詳目顯示

研究生: 王誠裕
CHENG-YU WANG
論文名稱: PI/TiO2複合薄膜應用於光催化還原二氧化碳之研究
Photocatalytic Reduction of Carbon Dioxide by PI/TiO2 Composite Membranes
指導教授: 賴君義
Juin-Yih Lai
口試委員: 賴君義
Juin-Yih Lai
蔡孟哲
Meng-Che Tsai
胡蒨傑
Chien-Chi Hu
洪維松
Wei-Song Hong
王志逢
Chih-Feng Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 82
中文關鍵詞: 光催化二氧化鈦銅摻雜二氧化碳複合膜
外文關鍵詞: Photocatalytic, TiO2, Cu doping, CO2, Composite membrane
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空氣中二氧化碳 (Carbon dioxide, CO2) 直接轉換成再生資源,是解決溫室效應與資源再生最佳的方法,本研究以複合膜進行空氣中CO2濃縮並直接轉化為再生資源,此複合膜由選擇層與反應層構成。選擇層以聚醯亞胺 (Polyimide, PI) 藉由乾式法製得,利用其緻密結構對CO2有高度的選擇性,可有效的將空氣中的CO2提濃,使高濃度CO2的空氣進到反應層。反應層以PI與光觸媒共混,藉由濕式法製膜,並調控凝聚槽水與N-甲基吡咯烷酮 (1-Methyl-2-pyrrolidon, NMP ) 比例製得,反應層為多孔連續結構,可提供較多的比表面積與催化反應點,同時促使CO2在孔道中環繞,增長滯留時間,提高CO2與觸媒的接觸機率與時間,同時導入水氣,使CO2、水氣及觸媒三者於薄膜中反應,並以光為驅動力,使觸媒生成電子-電洞,進而把CO2還原為再生資源。
    觸媒為四氯化鈦 (Titanium tetrachloride, TiCl4) 及二水合氯化銅 (Copper chloride dehydrate, CuCl2·2H2O) 利用水熱法合成,可形成以二氧化鈦 (TiO2) 為主體並摻雜氧化亞銅 (Cu2O) 之觸媒,銅離子取代鈦離子中心位置,促使電子組態重組生成氧空缺與Ti3+,可改善TiO2在可見光區的吸收度,使得能隙下降至3.057 eV,並使能帶落於有利於CO2還原位置。銅摻雜亦提升光電子傳輸並抑制電子–電洞重合,可提升光催化效率,摻雜氧化亞銅觸媒之一氧化碳 (Carbon monoxide, CO)產量為TiO2的157%,因此銅摻雜有效提升CO2還原反應的效率。
    利用薄膜與觸媒結合的複合膜,選擇層可有效地提升進料空氣中CO2濃度,並避免非反應氣體於觸媒表面的活性點發生競爭吸附關係,可提高反應催化點的有效利用,薄膜的多孔結構增加CO2與觸媒表面接觸,可有效地利用活性點並提高氣體於薄膜內部的滯留時間,藉此提升光催化效能,CT-0.1混摻20%的複合膜產量可達1.262 μmole g-1 hr-1,調控選擇層厚度,可使CO2滲透量提升,為觸媒提供更多反應物與富含CO2的有利環境,進而提升還原反應的效率,由選擇層的製膜厚度為200 μm調降至140 μm時,一氧化碳產量可高達2.211 μmole g-1 hr-1,由此可知觸媒與薄膜的分離效能與選擇性具有相依關係,可藉由薄膜調控來提升分離效能並提升光催化效能,因此利用薄膜與觸媒的結合,對於解決CO2與石化資源耗盡的問題具有相當大的潛力。


    Carbon dioxide (CO2) in the air is converted into regeneration resources, which is the best solution for the greenhouse effect and regeneration. In this work, CO2 is concentrated and converted into regeneration resources by composite membranes, which is composed of a selective layer and reactive layer. The selective layer is made of polyimide by the dry method, which contains the dense structure that is high selectivity for CO2, which can efficiently concentrate CO2 of the air, which permeates into the reactive layer. The reactive layer is made of polyimide and photocatalyst by the wet method, which needs to control the ratio for water and 1-methyl-2-pyrrolidone (NMP) in the coagulation tank. The reactive layer is the continuous porous structure that can offer more surface and active sites, which also increases the residence time for CO2 in the composite membranes, which can enhance the contact probability and time for CO2 and catalyst. Simultaneously, water vapor is induced into the composite membranes to make CO2, water vapor, and photocatalyst react in the composite membranes. The catalyst produces photoelectron-hole by UV-light as the driving force. CO2 is reduced to the resource of regeneration.
    The photocatalyst is made of titanium tetrachloride (TiCl4) and copper chloride dihydrate (CuCl2·2H2O) by the hydrothermal method. Titanium dioxide (TiO2) is the main body, which is doped with copper(I) oxide (Cu2O). Copper ions replace the positions of titanium ions to form oxygen vacancies and Ti3+ improving the absorbance under the visible region, which also reduces bandgap to 3.057 eV, it represents that the position of energy band has changed, that makes favorably CO2 reduction. Cu dopant also enhances photoelectron transport and inhibits the recombination of photoelectron-hole, it can enhance photocatalytic efficiency. Compared with TiO2. Copper-doped TiO2 can enhance the reaction of the photocatalytic and yield 157% more CO.
    For the composite membranes, the selective layer can concentrate CO2 in the air, which avoids the competitive adsorption of non-reactive gases on the active points of the catalyst surface, which enhances the active sites. The reactive layer forms the continuous porous structure increasing the residence time. The composite membranes with 20 wt% of CT-0.1 can reach 1.262 μmole g-1 hr-1, the thickness of the selective layer adjusted to 140 μm, which can enhance CO2 permeance to offer more reactant to the catalyst, CO yield enhance to 2.211 μmole g-1 hr-1. It can see that the catalyst depends on the permeance and selectivity of the membrane. Therefore, the combination of membrane and catalyst contains the considerable potential for solving the problem of CO2 and petrochemical resource exhaustion.

    第一章 緒論 1 1-1前言 1 1-2 CO2捕捉技術 3 1-3薄膜概述論 4 1-4氣體分離膜 7 1-5光觸媒之CO2還原 9 1-6研究動機 15 第二章 文獻回顧 17 2-1薄膜技術之CO2分離 17 2-2光觸媒二氧化鈦 (TiO2) 之CO2轉化 19 第三章 研究方法 24 3-1實驗藥品 24 3-2實驗儀器 25 3-3薄膜與觸媒製備 26 3-3-1光觸媒TiO2之改質與製備 26 3-3-2複合膜之製備 27 3-4薄膜與光觸媒鑑定 28 3-4-1場發射掃描式電子顯微鏡 (FE-SEM) 28 3-4-2 高功率X光繞射儀 (XRD) 28 3-4-3紫外光/可見光分析儀 (UV/VIS) 29 3-4-4光激發螢光分析儀 (PL) 29 3-4-5孔隙度與比表面積分析儀 (BET) 30 3-4-6 X射線光電子能譜學 (XPS) 30 3-4-7氣體滲透儀 (GPA) 30 3-4-8光催化系統–GC (Photocatalytic system–GC) 31 3-5實驗架構 33 第四章 結果與討論 34 4-1 TiO2之銅離子摻雜濃度調控 34 4-1-1銅離子濃度之TiO2晶相 34 4-1-2銅離子濃度對TiO2光、電效應之影響 36 4-1-3銅離子濃度對TiO2離子型態的影響 41 4-2 薄膜結構調控 44 4-2-1 凝聚液中NMP濃度對薄膜結構之影響 44 4-2-2 觸媒添加量與薄膜結構 46 4-2-3 PI緻密層厚度調控 49 4-3 複合薄膜之CO2轉化效能 51 4-3-1 銅離子改質TiO2之光催化效率 51 4-3-2 Cu-TiO2濃度對PI複合膜光催化效率之影響 52 4-3-3 PI緻密層調控之光催化效率 56 第五章 結論 60

    [1] I. Omae, Recent developments in carbon dioxide utilization for the production of organic chemicals, Coordination Chemistry Reviews, 256 (2012) 1384-1405.
    [2] G.M. Laboratory., Monthly Average Mauna Loa CO2, in, NOAA, 2020.
    [3] CBS., Earth's oceans could lose one-sixth of marine life by 2100 due to climate change, in, CBS NEWS, 2019.
    [4] 談駿嵩、王志盈, 二氧化碳捕獲, 科學發展, 510 (2015) 6.
    [5] A. Thekkedath, Study of fouling of ultrafiltration (UF) membranes by natural organic matter (MON): Charcterizations of humic acid cakes formed on the surfaces of flat-sheet membranes for drinking water treatment, in, 2007.
    [6] 葉信宏, Pebax/GO/PDMS/PSf/PET 混合基質複合薄膜應用於二氧化碳捕捉之研究, 中原大學化學工程研究所學位論文, (2019) 1-92.
    [7] X. Wang, C. Wu, T. Zhu, P. Li, S. Xia, The hierarchical flower-like MoS2 nanosheets incorporated into PES mixed matrix membranes for enhanced separation performance, Chemosphere, (2020) 127099.
    [8] B. Freeman, Engineers Improve Recycling System in Hydraulic Fracturing to Save Water and Energy, in, The University of Texas at Austin, 2013.
    [9] 賴君義主編, 薄膜科技概論 Introduction to membrane science and technology, 五南, 台北市, 2019.
    [10] F. Ismail, K.C. Khulbe, T. Matsuura, Reverse Osmosis, Elsevier, 2018.
    [11] S. Majidi Salehi, R. Santagada, S. Depietra, E. Fontananova, E. Curcio, G. Di Profio, Ionic Liquid Hydrogel Composite Membranes (IL-HCMs), ChemEngineering, 3 (2019) 47.
    [12] Y.L. Su, K.G. Beltsios, L.P. Cheng, Phase inversion in reusable baths (PIRBs): A new polymer membrane fabrication method as applied to EVOH, Journal of Applied Polymer Science, 136 (2019) 48193.
    [13] K.V. Agrawal, L.W. Drahushuk, M.S. Strano, Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374 (2016) 20150357.
    [14] T.-J. Kim, M.W. Uddin, M. Sandru, M.-B.J.E.P. Hägg, The effect of contaminants on the composite membranes for CO2 separation and challenges in up-scaling of the membranes, Energy Procedia, 4 (2011) 737-744.
    [15] A. Fujishima, K.J.n. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
    [16] C. Prasad, H. Tang, Q.Q. Liu, S. Zulfiqar, S. Shah, I. Bahadur, An overview of semiconductors/layered double hydroxides composites: Properties, synthesis, photocatalytic and photoelectrochemical applications, Journal of Molecular Liquids, 289 (2019) 111114.
    [17] Henderson, M. A, A surface science perspective on TiO2 photocatalysis, Surface Science Reports, 66 (2011) 185-297.
    [18] L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, H. Wang, Construction of an all-solid-state Z-scheme photocatalyst based on graphite carbon nitride and its enhancement to catalytic activity, Environmental Science: Nano, 5 (2018) 599-615.
    [19] T. Billo, I. Shown, A. kumar Anbalagan, T.A. Effendi, A. Sabbah, F.Y. Fu, C.M. Chu, W.Y. Woon, R.S. Chen, C.H. Lee, A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity, Nano Energy, (2020) 104717.
    [20] Z. Xiong, Z. Xu, Y. Li, L. Dong, J. Wang, J. Zhao, X. Chen, Y. Zhao, H. Zhao, J. Zhang, Incorporating highly dispersed and stable Cu+ into TiO2 lattice for enhanced photocatalytic CO2 reduction with water, Applied Surface Science, 507 (2020) 145095.
    [21] S. Huang, H. Yi, L. Zhang, Z. Jin, Y. Long, Y. Zhang, Q. Liao, J. Na, H. Cui, S. Ruan, Non-precious molybdenum nanospheres as a novel cocatalyst for full-spectrum-driven photocatalytic CO2 reforming to CH4, Journal of Hazardous Materials, 393 (2020) 122324.
    [22] J. Jiao, Y. Wei, Z. Zhao, J. Liu, J. Li, A. Duan, G. Jiang, Photocatalysts of 3D ordered macroporous TiO2-supported CeO2 nanolayers: design, preparation, and their catalytic performances for the reduction of CO2 with H2O under simulated solar irradiation, Industrial & Engineering Chemistry Research, 53 (2014) 17345-17354.
    [23] M. Tahir, N.S. Amin, Photocatalytic CO2 reduction and kinetic study over In/TiO2 nanoparticles supported microchannel monolith photoreactor, Applied Catalysis A: General, 467 (2013) 483-496.
    [24] Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y.J.A.C. Wang, Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper (I) oxide co‐catalysts with a core–shell structure, Angewandte Chemie, 125 (2013) 5888-5891.
    [25] F. Zhang, Y.H. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction, Applied Catalysis B: Environmental, 268 (2020) 118380.
    [26] R. Wang, J. Shen, K. Sun, H. Tang, Q. Liu, Enhancement in photocatalytic activity of CO2 reduction to CH4 by 0D/2D Au/TiO2 plasmon heterojunction, Applied Surface Science, 493 (2019) 1142-1149.
    [27] Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity, Journal of Materials Science & Technology, (2020).
    [28] Y. Wang, F. Wang, Y. Chen, D. Zhang, B. Li, S. Kang, X. Li, L. Cui, Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO2 catalysts for the reduction of CO2 with H2O under simulated solar irradiation, Applied Catalysis B: Environmental, 147 (2014) 602-609.
    [29] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chemical reviews, 95 (1995) 735-758.
    [30] I.H. Tseng, W.C. Chang, J.C. Wu, Photoreduction of CO2 using sol–gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental, 37 (2002) 37-48.
    [31] S. Das, W.W. Daud, A review on advances in photocatalysts towards CO2 conversion, Rsc Advances, 4 (2014) 20856-20893.
    [32] K. Zhang, L. Guo, Metal sulphide semiconductors for photocatalytic hydrogen production, Catalysis Science & Technology, 3 (2013) 1672-1690.
    [33] I. Tsuji, H. Kato, A. Kudo, Photocatalytic hydrogen evolution on ZnS− CuInS2− AgInS2 solid solution photocatalysts with wide visible light absorption bands, Chemistry of Materials, 18 (2006) 1969-1975.
    [34] E.P. Favvas, F.K. Katsaros, S.K. Papageorgiou, A.A. Sapalidis, A.C. Mitropoulos, A review of the latest development of polyimide based membranes for CO2 separations, ReactiveFunctional Polymers, 120 (2017) 104-130.
    [35] A.M. Hillock, W.J. Koros, Cross-linkable polyimide membrane for natural gas purification and carbon dioxide plasticization reduction, Macromolecules, 40 (2007) 583-587.
    [36] A. Naderi, A.A. Tashvigh, T.S. Chung, H2/CO2 separation enhancement via chemical modification of polybenzimidazole nanostructure, Journal of Membrane Science, 572 (2019) 343-349.
    [37] H. Zhao, L. Feng, X. Ding, Y. Zhao, X. Tan, Y. Zhang, The nitrogen-doped porous carbons/PIM mixed-matrix membranes for CO2 separation, Journal of Membrane Science, 564 (2018) 800-805.
    [38] S.K. Elsaidi, S.R. Venna, M.H. Mohamed, M.J. Gipple, D.P. Hopkinson, Dual-Layer MOF Composite Membranes with Tuned Interface Interaction for Postcombustion Carbon Dioxide Separation, Cell Reports Physical Science, 1 (2020) 100059.
    [39] X. Cao, H. Xu, S. Dong, J. Xu, Z. Qiao, S. Zhao, J. Wang, Z. Wang, Preparation of high-performance and pressure-resistant mixed matrix membranes for CO2/H2 separation by modifying COF surfaces with the groups or segments of the polymer matrix, Journal of Membrane Science, 601 (2020) 117882.
    [40] R.S. Zambare, K.B. Dhopte, P.R. Nemade, C.Y. Tang, Effect of oxidation degree of GO nanosheets on microstructure and performance of polysulfone-GO mixed matrix membranes, Separation and Purification Technology, (2020) 116865.
    [41] A.R. Kamble, C.M. Patel, Z. Murthy, Polyethersulfone based MMMs with 2D materials and ionic liquid for CO2, N2 and CH4 separation, Journal of Environmental Management, 262 (2020) 110256.
    [42] Z. Geng, Q. Song, X. Zhang, B. Yu, Y. Shen, H. Cong, Mixed matrix membranes composed of WS2 nanosheets and fluorinated poly (2, 6-dimethyl-1, 4-phenylene oxide) via Suzuki reaction for improved CO2 separation, Journal of Membrane Science, 565 (2018) 226-232.
    [43] A.R. Kamble, C.M. Patel, Z. Murthy, Different 2D materials based polyetherimide mixed matrix membranes for CO2/N2 separation, Journal of Industrial and Engineering Chemistry, 81 (2020) 451-463.
    [44] W. Chen, Z. Zhang, L. Ho, C. Yang, H. Shen, K. Yang, Z. Wang, Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance, Separation and Purification Technology, (2020) 117198.
    [45] K. Duan, J. Wang, Y. Zhang, J. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, Journal of Membrane Science, 572 (2019) 588-595.
    [46] Y. Cheng, Y. Ying, L. Zhai, G. Liu, J. Dong, Y. Wang, M.P. Christopher, S. Long, Y. Wang, D. Zhao, Mixed matrix membranes containing MOF@ COF hybrid fillers for efficient CO2/CH4 separation, Journal of membrane science, 573 (2019) 97-106.
    [47] B. Zornoza, O. Esekhile, W.J. Koros, C. Tellez, J. Coronas, Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation, Separation and purification technology, 77 (2011) 137-145.
    [48] A. Achari, S. Sahana, M. Eswaramoorthy, High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency, Energy & Environmental Science, 9 (2016) 1224-1228.
    [49] J. Shen, G. Liu, K. Huang, W. Jin, K.R. Lee, N. Xu, Membranes with fast and selective gas‐transport channels of laminar graphene oxide for efficient CO2 capture, Angewandte Chemie, 127 (2015) 588-592.
    [50] M. Samat, A. Ali, M. Taib, O. Hassan, M. Yahya, Hubbard U calculations on optical properties of 3d transition metal oxide TiO2, Results in physics, 6 (2016) 891-896.
    [51] B. Xin, P. Wang, D. Ding, J. Liu, Z. Ren, H. Fu, Effect of surface species on Cu-TiO2 photocatalytic activity, Applied Surface Science, 254 (2008) 2569-2574.
    [52] D.A. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, Journal of Materials science, 46 (2011) 855-874.
    [53] X. Xin, T. Xu, L. Wang, C. Wang, Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction, Scientific reports, 6 (2016) 23684.
    [54] 林宸嶢, 張淑閔, 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究, in, 2010.
    [55] J. Gao, Q. Shen, R. Guan, J. Xue, X. Liu, H. Jia, Q. Li, Y. Wu, Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination, Journal of CO2 Utilization, 35 (2020) 205-215.
    [56] C.Y. Huang, R.T. Guo, W.G. Pan, J.Y. Tang, W.G. Zhou, X.Y. Liu, H. Qin, P.Y. Jia, One-dimension TiO2 nanostructures with enhanced activity for CO2 photocatalytic reduction, Applied Surface Science, 464 (2019) 534-543.
    [57] K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský, O. Šolcová, Effect of TiO2 particle size on the photocatalytic reduction of CO2, Applied Catalysis B: Environmental, 89 (2009) 494-502.
    [58] 王宥喆, 摻雜銅離子於二氧化鈦表面對光催化還原二氧化碳特性探討, 交通大學環境工程系所學位論文, (2015) 1-72.
    [59] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, in: Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011, pp. 293-295.
    [60] S. Zhu, X. Chen, Z. Li, X. Ye, Y. Liu, Y. Chen, L. Yang, M. Chen, D. Zhang, G. Li, Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction, Applied Catalysis B: Environmental, 264 (2020) 118515.
    [61] H. Ge, B. Zhang, H. Liang, M. Zhang, K. Fang, Y. Chen, Y. Qin, Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+, Applied Catalysis B: Environmental, 263 (2020) 118133.
    [62] S.M. Park, A. Razzaq, Y.H. Park, S. Sorcar, Y. Park, C.A. Grimes, S.I. In, Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel, ACS omega, 1 (2016) 868-875.
    [63] S. Wang, K. Meng, L. Zhao, Q. Jiang, J. Lian, Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis, Ceramics International, 40 (2014) 5107-5110.
    [64] M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts, Journal of Electroanalytical Chemistry, 396 (1995) 21-26.
    [65] J.S. Hwang, J.S. Chang, S.E. Park, K. Ikeue, M. Anpo, Photoreduction of carbondioxide on surface functionalized nanoporous catalysts, Topics in Catalysis, 35 (2005) 311-319.
    [66] Y. Li, W.N. Wang, Z. Zhan, M.H. Woo, C.Y. Wu, P. Biswas, Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts, Applied Catalysis B: Environmental, 100 (2010) 386-392.
    [67] A. Rahmati, A.B. Sirgani, M. Molaei, M. Karimipour, Cu-doped ZnO nanoparticles synthesized by simple co-precipitation route, The European Physical Journal Plus, 129 (2014) 250.
    [68] J. Nayak, S. Kimura, S. Nozaki, Enhancement of the visible luminescence from the ZnO nanocrystals by Li and Al co-doping, Journal of luminescence, 129 (2009) 12-16.
    [69] C. Garlisi, J. Szlachetko, C. Aubry, D.L. Fernandes, Y. Hattori, C. Paun, M.V. Pavliuk, N.S. Rajput, E. Lewin, J. Sá, G. Palmisano, N-TiO2/Cu-TiO2 double-layer films: Impact of stacking order on photocatalytic properties, Journal of Catalysis, 353 (2017) 116-122.
    [70] Y. Liu, Y. Wang, Y. Zhang, Z. You, X. Lv, Mechanism on reduction and nitridation of micrometer‐sized titania with ammonia gas, Journal of the American Ceramic Society, 103 (2020) 3905-3916.
    [71] J. Lee, Y. Sohn, J.H. Park, S. Lee, B.S. Kim, I.S. Park, P. Kim, Preparation and electrochemical performance of titanium nitride-graphene nanocomposite with high Ti contents and tailored morphology, Current Applied Physics, 19 (2019) 961-967.
    [72] H.P. Gou, G.H. Zhang, K.C. Chou, Phase evolution and reaction mechanism during reduction–nitridation process of titanium dioxide with ammonia, Journal of Materials Science, 52 (2017) 1255-1264.
    [73] V.D. Chinh, A. Broggi, L. Di Palma, M. Scarsella, G. Speranza, G. Vilardi, P.N. Thang, XPS spectra analysis of Ti2+, Ti3+ ions and dye photodegradation evaluation of titania-silica mixed oxide nanoparticles, Journal of Electronic Materials, 47 (2018) 2215-2224.

    無法下載圖示 全文公開日期 2025/08/25 (校內網路)
    全文公開日期 2025/08/25 (校外網路)
    全文公開日期 2025/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE