簡易檢索 / 詳目顯示

研究生: Bobby Refokry Oeza
Bobby Refokry Oeza
論文名稱: 合成銅鐵礦基二元複合材料以增強環境修復的光氧化還原催化作用
Synthesis of Delafossite-Based Binary Composite to Enhance Photoredox Catalysis for Environmental Remediation
指導教授: 郭中豐
Chung-Feng Jeffrey Kuo
口試委員: 張大鵬
Ta-Peng Chang
黃昌群
Chang-Chiun Huang
郭中豐
Chung-Feng Jeffrey Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 103
中文關鍵詞: AgAlO2/g-C3N4亞甲基藍二元光催化劑2-氯苯酚
外文關鍵詞: AgAlO2/g-C3N4, , methylene blue , binary photocatalyst, 2-chlorophenol
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了利用基於半導體的光催化劑將太陽能高效轉換為化學能的方法,凸顯其在環境修復方面的潛力。主要專注在將光催化技術應用於2-氯苯酚和亞甲基藍的降解,這是需要進行處理的關鍵污染物。本研究通過離子交換法、後續焙燒和超聲波處理合成了AgAlO2/g-C3N4二元納米複合材料,這個過程增強了AgAlO2到g-C3N4的光產生電子轉移,使得g-C3N4表面的還原電子充電顯著增加。通過詳細的晶體學、電子顯微鏡、光電子能譜、電化學和光譜學表徵分析,全面地檢驗了合成複合材料在2-氯酚和亞甲藍降解中的光催化活性。在各種複合材料中,AgAlO2/20% g-C3N4被證明是最活躍的光催化劑,其在可見光下對亞甲藍和2-氯酚的降解達到98% 和97%。值得注意的是,AgAlO2/20% g-C3N4超越了單獨的AgAlO2和單獨的g-C3N4,表現出亞甲藍的降解率提高1.66倍,以及分別為20.17×10-3 min-1、4.18×10-3 min-1和3.48×10-3 min-1的恆定速率(k)值。提高的光催化活性歸因於電子-電洞對的再結合速率降低,確認O2•− 和h+是在可見區域引導亞甲藍光降解的主要光活性物種,這些發現為開發用於環境修復的高效二元光催化劑提供了新的可能性。


    This study explores the efficient conversion of solar energy into chemical energy using semiconductor-based photocatalysts, showcasing their potential in environmental remediation. The primary focus is on the application of photocatalytic technology for the degradation of 2-chlorophenol and methylene blue, critical pollutants requiring remediation. The research involves the synthesis of binary AgAlO2/g-C3N4 nanocomposites through an exchange ion method, subsequent calcination, and sonication. This process enhances the transfer of photogenerated electrons from AgAlO2 to g-C3N4, resulting in a significantly increased reductive electron charge on the surface of g-C3N4. The photocatalytic activity of the synthesized composites is comprehensively examined in the degradation of 2-chlorophenol and methylene blue through detailed crystallographic, electron-microscopy, photoemission spectroscopy, electrochemical, and spectroscopic characterizations. Among the various composites, AgAlO2/20% g-C3N4 emerges as the most active photocatalyst, achieving an impressive 98% degradation of methylene blue and 97% degradation of 2-chlorophenol under visible light. Notably, AgAlO2/20% g-C3N4 surpasses bare AgAlO2 and bare g-C3N4, exhibiting 1.66 times greater methylene blue degradation and constant rate (k) values of 20.17 × 10-3 min-1, 4.18 × 10-3 min-1, and 3.48 × 10-3 min-1, respectively. The heightened photocatalytic activity is attributed to the diminished recombination rate of electron-hole pairs. Scavenging evaluations confirm that O2•− and h+ are the primary photoactive species steering methylene blue photodegradation over AgAlO2/g-C3N4 in the visible region. These findings present new possibilities for the development of efficient binary photocatalysts for environmental remediation.

    摘要 i Abstract ii Acknowledgments iii List of Contents v List of Figures vii List of Tables xi Chapter 1 Introduction 1 1.1 Research background 1 1.2 Previous studies 1 1.3 Problem statement and scope of the problem 3 1.4 Research objectives 4 1.5 Research hypothesis 4 1.6 Research flowchart and thesis structure 4 1.7 Research benefit 5 Chapter 2 Literature review 7 2.1 Semiconductor materials in photocatalysis 7 2.2 Photocatalytic reaction mechanism 11 2.3 Heterojunction photocatalysis in the degradation of various pollutants 16 2.4 Water pollution by methylene blue and 2-chlorophenol and processing of organic pollutants 23 2.5 Properties of g-C3N4 24 2.6 Properties of Ag-based delafossite materials 26 2.7 Previous research and AgAlO2/g-C3N4 heterojunction photocatalyst 28 Chapter 3 Experimental plan 32 3.1 Materials and equipment 32 3.2 Experimental design and procedure 33 3.2.1 Synthesis of NaAlO2 powder 33 3.2.2 Synthesis of AgAlO2 nanoparticle 33 3.2.3 Synthesis of g-C3N4 nanosheet 33 3.2.4 Synthesis of AgAlO2/g-C3N4 with mass variations of g-C3N4 34 3.2.5 Characterization and photocatalytic application of AgAlO2/g-C3N4 heterojunction photocatalyst 34 3.3 Schematic route of experimental 39 Chapter 4 Results and discussion 47 4.1 Characterization of AgAlO2/g-C3N4 photocatalyst 47 4.1.1 X-ray diffraction (XRD) analysis 47 4.1.2 Fourier transform infrared (FTIR) analysis 51 4.1.3 X-ray photoelectron spectroscopic (XPS) analysis 53 4.1.4 Field emission scanning microscopy and energy dispersive x-ray (FESEM-EDX) analysis 55 4.1.5 Brunauer Emmett Teller (BET) analysis 58 4.1.6 UV-vis, band gap, and photoluminescence (PL) analysis 59 4.1.7 Photocurrent density, electrochemical impedance spectroscopy (EIS) spectra and Mott-Schottky analysis 62 4.2 Photocatalytic activity 65 4.2.1 Photocatalytic efficiency to degrade methylene blue and 2-chlorophenol 65 4.2.2 Mechanism of photocatalytic reaction 72 4.2.3 Free radical trapping experiments 73 4.2.4 Reusability of photocatalyst 74 Chapter 5 Conclusions and recommendations for future research 76 5.1 Conclusions 76 5.2 Recommendations for future research 77 References 78 Appendix 97 A Process of Rietveld refinement and preparation of samples 97 B Process for calculating crystallite size and crystallinity 101

    [1] WS. Koe, JW. Lee, WC. Chong, YL. Pang, and LC. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environ Sci Pollut Res Int, 27 (3), 2522–2565, 2020, doi: 10.1007/s11356-019-07193-5.
    [2] M. Nazim, AA. P. Khan, AM. Asiri, and JH. Kim, “Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature,” ACS Omega, 6 (4), 2601–2612, 2021, doi: 10.1021/acsomega.0c04747.
    [3] US Environmental Protection Agency, “Update of human health ambient water quality criteria: 2-chlorophenol,” https://www.epa.gov/sites/default/files/2015-10/documents/human-health-2015-update-factsheet.pdf Accessed on January 31, 2024.
    [4] J. Liu, S. Sun, J. Liu, Y. Kuang, J. Shi , L. Dong, N. Li, J. Lu, J. Lin, S. Li, and Y. Lan, “Achieving high-efficient photoelectrocatalytic degradation of 4-chlorophenol via functional reformation of titanium-oxo clusters,” J Am Chem Soc, 145 (11), 6112–6122, 2023, doi: 10.1021/jacs.2c11509.
    [5] D. Tang and G. Zhang, “Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance,” Appl Surf Sci, 391, 415–422, 2017, doi: 10.1016/j.apsusc.2016.06.023.
    [6] K. Bustos-Ramírez, CE. Barrera-Díaz, M. De Icaza-Herrera, AL. Martínez-Hernández, R. Natividad-Rangel, and C. Velasco-Santos, “4-chlorophenol removal from water using graphite and graphene oxides as photocatalysts,” J Environ Health Sci Eng, 13 (1), 2015, doi: 10.1186/s40201-015-0184-0.
    [7] Z. Zhang, R. Ji, Q. Sun, J. He, D. Chen, N. Li, H. Li, A. Marcomini, Q. Xu, and J. Lu, “Enhanced photocatalytic degradation of 2-chlorophenol over Z-scheme heterojunction of CdS-decorated oxygen-doped g-C3N4 under visible-light,” Appl Catal B, 324, 2023, doi: 10.1016/j.apcatb.2022.122276.
    [8] DE. Lee, MK. Kim, M. Danish, and WK. Jo, “State-of-the-art review on photocatalysis for efficient wastewater treatment: Attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation,” Catal Commun, 106764, 2023, doi: 10.1016/j.catcom.2023.106764.
    [9] E. Cerrato, E. Gaggero, P. Calza, and MC. Paganini, “The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review,” Chem Eng J Adv , 10, 2022, doi: 10.1016/j.ceja.2022.100268.
    [10] A. Chawla, A. Sudhaik, P. Raizada, A. Khan, A. Singh, Q. Van Le, N. Van Huy, T. Ahamad, S. Alshehri, A. Asiri, and P. Singh, “An overview of SnO2 based Z scheme heterojuctions: Fabrication, mechanism and advanced photocatalytic applications,” J Ind Eng Chem, 116, 515–542, 2022, doi: 10.1016/j.jiec.2022.09.041.
    [11] G. Liu, S. Li, Y. Lu, J. Zhang, Z. Feng, and C. Li, “Controllable synthesis of α-Bi2O3 and γ-Bi2O3with high photocatalytic activity by α-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method,” J Alloys Compd, 689, 787–799, 2016, doi: 10.1016/j.jallcom.2016.08.047.
    [12] M. Qamar, M. Javed, S. Shahid, M. Shariq, M. Fadhali, S. Ali, and M. Khan, “Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review,” Heliyon, 9 (1), 2023, doi: 10.1016/j.heliyon.2022.e12685.
    [13] AAA. Mutalib, NF. Jaafar, and M. Miskam, “The exploitation of plant wastes in ZnO photocatalyst electrosynthesis for 2,4-dichlorophenol degradation application,” Chem Eng Res Des, 198, 105–120, 2023, doi: 10.1016/j.cherd.2023.08.048.
    [14] W. Zhu, Y. Yue, H. Wang, B. Zhang, R. Hou, J. Xiao, X. Huang, A. Ishag, and Y. Sun, “Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review,” J Environ Chem Eng, 11 (3), 2023, doi: 10.1016/j.jece.2023.110164.
    [15] A. Balakrishnan and M. Chinthala, “Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants,” Chemosphere, 297, 2022, doi: 10.1016/j.chemosphere.2022.134190.
    [16] H. Wang, Y. Xu, D. Xu, L. Chen, X. Qiu, and Y. Zhu, “Graphitic carbon nitride for photoelectrochemical detection of environmental pollutants,” ACS ES and T Eng, 2 (2), 140–157, 2022, doi: 10.1021/acsestengg.1c00337.
    [17] X. Zhang, H. Liang, C. Li, and J. Bai, “1D CeO2/g-C3N4 type II heterojunction for visible-light-driven photocatalytic hydrogen evolution,” Inorg Chem Commun, 144, 2022, doi: 10.1016/j.inoche.2022.109838.
    [18] Q. Zhao, S. Liu, S. Chen, B. Ren, Y. Zhang, X. Luo, and Y. Sun, “Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B,” Chem Phys Lett, 805, 2022, doi: 10.1016/j.cplett.2022.139908.
    [19] Q. Jin, X. Dai, J. Song, K. Pu, X. Wu, J. An, and T. Zhao, “High photocatalytic performance of g-C3N4/WS2 heterojunction from first principles,” Chem Phys, 545, 2021, doi: 10.1016/j.chemphys.2021.111141.
    [20] R. Chen, S. Ding, N. Fu, and X. Ren, “Preparation of a g-C3N4/Ag3PO4 composite Z-type photocatalyst and photocatalytic degradation of Ofloxacin: Degradation performance, reaction mechanism, degradation pathway and toxicity evaluation,” J Environ Chem Eng, 11 (2), 2023, doi: 10.1016/j.jece.2023.109440.
    [21] G. Tekin, G. Ersöz, and S. Atalay, “Comparison of synthesis methods for bioi/g-c3n4 heterojunction photocatalysts and testing their visible light activity in sugar processing wastewater treatment,” J Ind Eng Chem, 2023, doi: 10.1016/j.jiec.2023.06.020.
    [22] X. Chen, C. Chen, and J. Zang, “Construction of B-doped g-C3N4/MoO3 photocatalyst to promote light absorption and Z-scheme charge transfer,” Diam Relat Mater, 132, 2023, doi: 10.1016/j.diamond.2022.109606.
    [23] A. Balakrishnan, GJ. Gaware, and M. Chinthala, “Heterojunction photocatalysts for the removal of nitrophenol: A systematic review,” Chemosphere, 310, 2023, doi: 10.1016/j.chemosphere.2022.136853.
    [24] S. Das, T. Deka, P. Ningthoukhangjam, A. Chowdhury, and RG. Nair, “A critical review on prospects and challenges of metal-oxide embedded g-C3N4-based direct Z-scheme photocatalysts for water splitting and environmental remediation,” Appl Surf Sci Adv, 11, 2022, doi: 10.1016/j.apsadv.2022.100273.
    [25] A. Tang, Y. Jia, S. Zhang, Q. Yu, and X. Zhang, “Synthesis, characterization and photocatalysis of AgAlO2/TiO2 heterojunction with sunlight irradiation,” Catal Commun, 50, 1–4, 2014, doi: 10.1016/j.catcom.2014.02.015.
    [26] X. Hou, Y. Duan, Z. Wang, and Q. Lu, “Ferroelectric polarization-enhanced photodegradation performance for dyes in BaTiO3/AgAlO2 heterostructure,” J Alloys Compd, 922, 2022, doi: 10.1016/j.jallcom.2022.166291.
    [27] TE. Somesh, Siddaramaiah, and T. Demappa, “Tailoring of ternary nanocomposite films of poly(vinyl alcohol)/AgAlO2@reduced graphene oxide: An active material for flexible supercapacitors,” J Solid State Chem, 309, 2022, doi: 10.1016/j.jssc.2021.122824.
    [28] TE. Somesh, MQA. Al-Gunaid, BS. Madhukar, and Siddaramaiah, “Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO2 nanoparticles,” J Mater Sci: Mater Electron, 30 (1), 37–49, 2019, doi: 10.1007/s10854-018-0226-3.
    [29] J. Song, C. Jiang, Z. Liu, Z. Yang, Z. Wang, Q. Jiang, and P. Ruuskanen, “Drastic performance enhancement of photoluminescence and water electrolysis by local-magnetic-field-assisted LSPR of Ag NPs and NCs,” Colloids Surf A Physicochem Eng Asp, 665, 2023, doi: 10.1016/j.colsurfa.2023.131215.
    [30] W. Ben Soltan, M. Abdalla, K. Harrath, J. Peng, Y. Zhang, Z. Cao, and H. Liu, “Preparation of LSPR enhanced Z-scheme Pd/WO3@SnO2 for photocatalytic decomposition of organic compounds under simulated sunlight,” J Environ Chem Eng, 11 (5), 2023, doi: 10.1016/j.jece.2023.110637.
    [31] B. Tu, K. Yu, D. Fu, L. Zhou, R. Wang, X. Jiang, H. Liu, X. Cao, X. Gong, R. He, Y. Tang, T. Chen, and W. Zhu, “Amino-rich Ag-NWs/NH2-MIL-125(Ti) hybrid heterostructure via LSPR effect for photo-assist uranium extraction from fluorine-containing uranium wastewater without sacrificial agents,” Appl Catal B, 337, 2023, doi: 10.1016/j.apcatb.2023.122965.
    [32] J. Francis, N. Puthiya Purayil, S. Edappadikkunnummal, C. Keloth, and C. S. Suchand Sangeeth, “Impact of photoinduced energy transfer and LSPR of Au and Ag nanoparticles on nonlinear optical response of methyl orange,” J Mol Liq, 390, 123048, 2023, doi: 10.1016/j.molliq.2023.123048.
    [33] S. Ouyang, Z. Li, Z. Ouyang, T. Yu, J. Ye, and Z. Zou, “Correlation of crystal structures, electronic structures, and photocatalytic properties in a series of Ag-based oxides: AgAlO2, AgCrO2, and Ag2CrO4,” J. Phys. Chem. C, 112 (8), 3134–3141, 2008, doi: 10.1021/jp077127w.
    [35] CG. Granqvist, “Transparent conductors as solar energy materials: A panoramic review,” Sol. Energy Mater Sol. Cells, 91 (17), 1529–1598, 2007, doi: 10.1016/j.solmat.2007.04.031.
    [36] MR Ataabadi, and M. Jamshidi, “Improved photocatalytic degradation of methylene blue under visible light using acrylic nanocomposite contained silane grafted nano TiO2,” J Photochem Photobiol A, 443, 2023, 114832, doi: 10.1016/j.jphotochem.2023.114832.
    [37] F. Opoku, KK. Govender, CGCE. van Sittert, and PP. Govender, “Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants,” Adv. Sustain. Syst, 1 (7), 2017, doi: 10.1002/adsu.201700006.
    [38] R. Ameta and SC. Ameta, “Chapter 3 binary semiconductors,” CRC Press, LLC., Florida, 17–34, 2016, doi: 10.1201/9781315372396-4.
    [39] D. Chahar, D. Kumar, P. Thakur, and A. Thakur, “Visible light induced photocatalytic degradation of methylene blue dye by using Mg doped Co-Zn nanoferrites,” Mater Res Bull, 162, 2023, 112205, doi: 10.1016/j.materresbull.2023.112205.
    [40] M. Ma, Y. Yang, Y. Chen, Y. Ma, P. Lyu, A. Cui, W. Huang, Z. Zhang, Y. Li, and F. Si, “Photocatalytic degradation of MB dye by the magnetically separable 3D flower-like Fe3O4/SiO2/MnO2/BiOBr-Bi photocatalyst,” J. Alloys Compd, 861, 2021, doi: 10.1016/j.jallcom.2020.158256.
    [41] Y. Wang, K. Selvakumar, TH. Oh, M. Arunpandian, and M. Swaminathan, “Boosting photocatalytic activity of single metal atom oxide anchored on TiO2 nanoparticles: An efficient catalyst for photodegradation of pharmaceutical pollutants,” J Alloys Compd, 950, 2023, doi: 10.1016/j.jallcom.2023.169821.
    [42] H. Yao, Y. Zhang, S. He, H. Zuo, and G. Feng, “New insight into the enhanced photocatalytic activity of Al-, C- and Al-C co doped rutile TiO2 photocatalysts,” Mater Today Commun, 36, 2023, doi: 10.1016/j.mtcomm.2023.106763.
    [43] S. Yu, C. J. Kousseff, and CB. Nielsen, “n-Type semiconductors for organic electrochemical transistor applications,” Synth Met, 293, 2023, doi: 10.1016/j.synthmet.2023.117295.
    [44] H. Sun, X. Guo, and A. Facchetti, “High-Performance n-type polymer semiconductors: applications, recent development, and challenges,” Chem, 6 (6), 1310–1326, 2020, doi: 10.1016/j.chempr.2020.05.012.
    [45] X. Han, B. Lu, X. Huang, C. Liu, S. Chen, J. Chen, Z. Zeng, S. Deng, and J. Wang, “Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity,” Appl Catal B, 316, 2022, doi: 10.1016/j.apcatb.2022.121587.
    [46] X. Jiang, D. Fan, X. Yao, Z. Dong, X. Li, S. Ma, J. Liu, D. Zhang, H. Li, X. Pu, and P. Cai, “Highly efficient flower-like ZnIn2S4/CoFe2O4 photocatalyst with p-n type heterojunction for enhanced hydrogen evolution under visible light irradiation,” J Colloid Interface Sci, 641, 26–35, 2023, doi: 10.1016/j.jcis.2023.03.055.
    [47] Z. Ma, P. Zhou, L. Zhang, Y. Zhong, X. Sui, B. Wang, Y. Ma, X. Feng, H. Xu, and Z. Mao, “g-C3N4 nanosheets exfoliated by green wet ball milling process for photodegradation of organic pollutants,” Chem Phys Lett, 766, 2021, doi: 10.1016/j.cplett.2021.138335.
    [48] T. Nguyen, T. Pham, N. Viet P. Thang R. Rajagopal R. Sathya S. Jung, and T. Kim, “Improved photodegradation of antibiotics pollutants in wastewaters by advanced oxidation process based on Ni-doped TiO2,” Chemosphere, 302, 2022, doi: 10.1016/j.chemosphere.2022.134837.
    [49] R. Ghorbali, G. Essalah, A. Ghoudi, H. Guermazi, S. Guermazi, A. El Hdiy, H. Benhayoune, B. Duponchel, A. Oueslati, and G. Leroy, “The effect of (In, Cu) doping and co-doping on physical properties and organic pollutant photodegradation efficiency of ZnO nanoparticles for wastewater remediation,” Ceram Int, 2023, doi: 10.1016/j.ceramint.2023.08.076.
    [50] PS. Nandisha and Sowbhagya, “Bio-mediated synthesis of CuO nano bundles from Gomutra (cow urine): Synthesis, characterization, photodegradation of the malachite green dye and SBH mediated reduction of 4-nitrophenol,” J Mater Sci Eng B, 295, 2023, doi: 10.1016/j.mseb.2023.116607.
    [51] O. Ali, K. Alkanad, GC. Sujay Shekar, A. Hezam, and NK. Lokanath, “Synthesis, structural and morphological characterization of α-Bi2O3 nanostructure for photocatalytic hydrogen production and degradation of organic pollutants,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.04.345.
    [52] A. Samadi-Maybodi and K. Mohammadzadeh, “Improvement optical efficiency of modified g-C3N4 with soft templating agents as photocatalyst for photodegradation efficiency of pollutants, UV–vis and fluorescence spectroscopy studies,” Opt Mater Amst, 133, 2022, doi: 10.1016/j.optmat.2022.112908.
    [53] W. Yue, Z. Wang, J. Gong, Z. Wang, and Y. Dong, “Synthesis of tetrapod CdS by one-pot Solvothermal Method for Photodegradation to rhodamine B,” Mater Sci Semicond Process, 126, 2021, doi: 10.1016/j.mssp.2021.105671.
    [54] J. de Sousa, T. da Silva, N. de Moraes, M. Caetano Pinto da Silva, R. da Silva Rocha, R. Landers, and L. Rodrigues, “Visible light-driven ZnO/g-C3N4/carbon xerogel ternary photocatalyst with enhanced activity for 4-chlorophenol degradation,” Mater Chem Phys, 256, 2020, doi: 10.1016/j.matchemphys.2020.123651.
    [55] M. Raaja Rajeshwari, S. Kokilavani, and S. Sudheer Khan, “Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment,” Chemosphere, 291, 2022. doi: 10.1016/j.chemosphere.2021.132735.
    [56] H. Yang, “A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms,” Mater Res Bull, 142, 2021, doi: 10.1016/j.materresbull.2021.111406.
    [57] A. Shafi, S. Bano, L. Sharma, A. Halder, S. Sabir, and M. Z. Khan, “Exploring multifunctional behaviour of g-C3N4 decorated BiVO4/Ag2CO3 hierarchical nanocomposite for simultaneous electrochemical detection of two nitroaromatic compounds and water splitting applications,” Talanta, 241, 2022, doi: 10.1016/j.talanta.2022.123257.
    [58] I. Ahmad, Y. Zou, J. Yan, Y. Liu, S. Shukrullah, M. Naz, H. Hussain, W. Khan, and N. Khalid, “Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications,” Adv in Colloid and Interface Sci, 311, 2023, doi: 10.1016/j.cis.2022.102830.
    [59] M. Ghorbani, AR. Solaimany Nazar, M. Frahadian, and M. Khosravi, “Facile synthesis of Z-scheme ZnO-nanorod@BiOBr-nanosheet heterojunction as efficient visible-light responsive photocatalyst: The effect of electrolyte and scavengers,” J Photochem Photobiol A Chem, 429, 2022, doi: 10.1016/j.jphotochem.2022.113930.
    [60] S. Ghattavi and A. Nezamzadeh-Ejhieh, “A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: Focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers,” Compos B Eng, 183, 2020, doi: 10.1016/j.compositesb.2019.107712.
    [61] A. Syoufian and K. Nakashima, “Degradation of methylene blue in aqueous dispersion of hollow titania photocatalyst: Optimization of reaction by peroxydisulfate electron scavenger,” J Colloid Interface Sci, 313 (1), 213–218, 2007, doi: 10.1016/j.jcis.2007.04.027.
    [62] AD. Lopis, KS. Choudhari, R. Sai, KS. Kanakikodi, SP. Maradur, SA. Shivashankar, and SD. Kulkarni, “Laddered type-1 heterojunction: Harvesting full-solar-spectrum in scavenger free photocatalysis,” Sol Energy, 240, 57–68, 2022, doi: 10.1016/j.solener.2022.05.022.
    [63] A. Das, MK. Adak, N. Mahata, and B. Biswas, “Wastewater treatment with the advent of TiO2 endowed photocatalysts and their reaction kinetics with scavenger effect,” J Mol Liq, 338, 2021, doi: 10.1016/j.molliq.2021.116479.
    [64] K. Song, C. Zhang, Y. Zhang, G. Yu, M. Zhang, Y. Zhang, L. Qiao, M. Liu, N. Yin, Y. Zhao, and Y. Tao, “Efficient tetracycline degradation under visible light irradiation using CuBi2O4/ZnFe2O4 type II heterojunction photocatalyst based on two spinel oxides,” J Photochem Photobiol A Chem, 433, 2022, doi: 10.1016/j.jphotochem.2022.114122.
    [65] G. Wang, S. Lv, Y. Shen, W. Li, L. Lin, and Z. Li, “Advancements in heterojunction, cocatalyst, defect and morphology engineering of semiconductor oxide photocatalysts,” J Materiomics, 2023, doi: 10.1016/j.jmat.2023.05.014.
    [66] M. Haruna, J. Kwakye, ES. Agorku, F. Opoku, NK. Asare-Donkor, and AA. Adimado, “La–doped ZnO–rGO nanocomposites: Synthesis and characterization as photocatalyst for effective degradation of bromothymol blue dye in water,” Results Mater, 19, 100449, 2023, doi: 10.1016/j.rinma.2023.100449.
    [67] R. Ghorbali, G. Essalah, A. Ghoudi, H. Guermazi, S. Guermazi, A. El Hdiy, H. Benhayoune, B. Duponchel, A. Oueslati, and G. Leroy, “The effect of (In, Cu) doping and co-doping on physical properties and organic pollutant photodegradation efficiency of ZnO nanoparticles for wastewater remediation,” Ceram Int, 2023, doi: 10.1016/j.ceramint.2023.08.076.
    [68] SP. Onkani, PN. Diagboya, FM. Mtunzi, MJ. Klink, BI. Olu-Owolabi, and V. Pakade, “Comparative study of the photocatalytic degradation of 2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts,” J Environ Manage, 260, 2020, doi: 10.1016/j.jenvman.2020.110145.
    [69] R. Sultana, SI. Liba, MA. Rahman, N. Yeachin, IM. Syed, and MA. Bhuiyan, “Enhanced photocatalytic activity in RhB dye degradation by Mn and B co-doped mixed phase TiO2 photocatalyst under visible light irradiation,” Surf Interfaces, 42, 2023, doi: 10.1016/j.surfin.2023.103302.
    [70] Q. Zhu and J. Zhang, “Is g-C3N4 more suitable for photocatalytic reduction or oxidation in environmental applications?,” Environ Funct Mater, 1 (1), 121–125, 2022, doi: 10.1016/j.efmat.2022.05.003.
    [71] L. Xu Q. Zeng S. Xiong, and Y. Zhang, “Two-dimensional MoSe2/PtSe2 van der Waals type-II heterostructure: Promising visible light photocatalyst for overall water splitting,” Int J Hydrogen Energy, 2023, doi: 10.1016/j.ijhydene.2023.08.362.
    [72] SA. Younis, E. Amdeha, and RA. El-Salamony, “Enhanced removal of p-nitrophenol by β-Ga2O3-TiO2 photocatalyst immobilized onto rice straw-based SiO2 via factorial optimization of the synergy between adsorption and photocatalysis,” J Environ Chem Eng, 9 (1), 2021, doi: 10.1016/j.jece.2020.104619.
    [73] R. Yan, M. Wang, M. Shan, and H. Tang, “Preparation of a novel type-II FePc/PDINH heterojunction photocatalyst via electrostatic interactions for high-efficient phenol degradation,” Appl Surf Sci, 639, 2023, doi: 10.1016/j.apsusc.2023.158257.
    [74] X. Jiang, D. Fan, X. Yao, and Z. Dong, “Highly efficient flower-like ZnIn2S4/CoFe2O4 photocatalyst with p-n type heterojunction for enhanced hydrogen evolution under visible light irradiation,” J Colloid Interface Sci, 641, 26–35, 2023, doi: 10.1016/j.jcis.2023.03.055.
    [75] B. Liu, Y. Wang, W. Hua, and Y. Kang, “Fabrication of novel p-n heterojunction of BiOBr/Ag2WO4 photocatalysts with efficient visible-light-driven catalytic activity,” Mater Lett, 346, 2023, doi: 10.1016/j.matlet.2023.134563.
    [76] M. Lai, K. Lee, and T. Yang, “Highly effective interlayer expanded MoS2 coupled with Bi2WO6 as p-n heterojunction photocatalyst for photodegradation of organic dye under LED white light,” J Alloys Compd, 953, 2023, doi: 10.1016/j.jallcom.2023.169834.
    [77] P. Hemmati-Eslamlu, A. Habibi-Yangjeh, Y. Akinay, and T. Cetin, “Novel g-C3N4 nanorods/Cu3BiS3 nanocomposites: Outstanding photocatalysts with p-n heterojunction for impressively detoxification of water under visible light,” J Photochem Photobiol A Chem, 443, 2023, doi: 10.1016/j.jphotochem.2023.114862.
    [78] Z. Chen, B. Ning, and Y. Cai, “Rapid degradation of levofloxacin by p-n heterojunction AgFeO2/Ag3VO4 photocatalyst: Mechanism study and degradation pathway,” J Taiwan Inst Chem Eng, 151, 2023, doi: 10.1016/j.jtice.2023.105126.
    [79] J. Liu, L. Huang, Y. Li, J. Shi, and H. Deng, “Bi3.64Mo0.36O6.55 nanoparticles anchored in BiOI: A p-n heterojunction photocatalyst to enhance water purification,” Environ Pollut, 329, 2023, doi: 10.1016/j.envpol.2023.121645.
    [80] N. Ahmad, C-FJ. Kuo, M. Mustaqeem, A. Sangili, C.-C. Huang, and H.-T. Chang, “Synthesis of novel Type-II MnNb2O6/g-C3N4 Mott-Schottky heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism of fluoroquinolone-based antibiotics,” Chemosphere, 321, 138027, 2023, doi: 10.1016/j.chemosphere.2023.138027.
    [81] T. Garg, Nitansh, A. Goyal, A. Kaushik, and S. Singhal, “State-of-the-art evolution of g-C3N4 based Z-scheme heterostructures towards energy and environmental applications: A review,” Mater Res Bull, 168, 2023. doi: 10.1016/j.materresbull.2023.112448.
    [82] X. Zhang, X. Wang, and X. Meng, “Robust Z-scheme g-C3N4/WO3 heterojunction photocatalysts with morphology control of WO3 for efficient degradation of phenolic pollutants,” Sep Purif Technol, 255, 2021, doi: 10.1016/j.seppur.2020.117693.
    [83] H. Che, G. Che, H. Dong, and W. Hu, “Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity,” Appl Surf Sci, 455, 705–716, 2018, doi: 10.1016/j.apsusc.2018.06.038.
    [84] G. Hosseinzadeh, SM. Sajjadi, L. Mostafa, A. Yousefi, R. H. Vafaie, and S. Zinatloo-Ajabshir, “Synthesis of novel direct Z-scheme heterojunction photocatalyst from WO3 nanoplates and SrTiO3 nanoparticles with abundant oxygen vacancies,” Surf Interfaces, 42, 2023, doi: 10.1016/j.surfin.2023.103349.
    [85] F. Li, G. Zhu, J. Jiang, L. Yang, and F. Deng, “A review of updated S-scheme heterojunction photocatalysts,” J Mater Sci Technol, 2023, doi: 10.1016/j.jmst.2023.08.038.
    [86] S. Rana, A. Kumar, G. Sharma, P. Dhiman, A. García-Penas, and FJ. Stadler, “Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO2 reduction,” Chemosphere, 339, 2023, doi: 10.1016/j.chemosphere.2023.139765.
    [87] M. Haghmohammadi, N. Sajjadi, AA. Beni, SM. Hakimzadeh, A. Nezarat, and SD. Asl, “Synthesis of activated carbon/magnetite nanocatalyst for sono-Fenton-like degradation process of 4-chlorophenol in an ultrasonic reactor and optimization using response surface method,” J Water Process Eng, 55, 2023, doi: 10.1016/j.jwpe.2023.104216.
    [88] X. Qu, C. Chen, J. Lin, W. Qiang, L. Zhang, and D. Sun, “Engineered defect-rich TiO2/g-C3N4 heterojunction: A visible light-driven photocatalyst for efficient degradation of phenolic wastewater,” Chemosphere, 286, 2022, doi: 10.1016/j.chemosphere.2021.131696.
    [89] L. Song, X. Jin, A. Zada, and D. Hu, “Modifying MOF-derived hollow BiVO4 architecture with copper tetraphenylphorphyrin as high-efficiency wide-visible-light Z-scheme heterojunction photocatalyst for 2-chlorophenol degradation,” J Environ Chem Eng, 11 (3), 2023, doi: 10.1016/j.jece.2023.110069.
    [90] M. Ma, Y. Yang, Y. Chen, and Y. Ma, “Photocatalytic degradation of MB dye by the magnetically separable 3D flower-like Fe3O4/SiO2/MnO2/BiOBr-Bi photocatalyst,” J Alloys Compd, 861, 2021, doi: 10.1016/j.jallcom.2020.158256.
    [91] SNS. Kamarularifin, N. Abdullah, H. Abdullah, and N. Ainirazali, “Evaluation of NiO supported on waste sludge for the degradation of 2- chlorophenol,” Mater Today Proc, 2023, doi: 10.1016/j.matpr.2023.04.374.
    [92] S. Zhong, J. Pan, K. Tian, J. Qin, T. Qing, and J. Zhang, “Efficient degradation of p-chlorophenol by N,S-codoped biochar activated perxymonosulfate,” Process Saf Environ Prot, 169, 437–446, 2023, doi: 10.1016/j.psep.2022.10.081.
    [93] S. Chaveanghong, T. Kobkeatthawin, J. Trakulmututa, T. Amornsakchai, P. Kajitvichyanukul, and S. M. Smith, “Photocatalytic removal of 2-chlorophenol from water by using waste eggshell-derived calcium ferrite,” RSC Adv, 13 (26), 17565–17574, 2023, doi: 10.1039/d3ra01357j.
    [94] L. Gnanasekaran, AK. Priya, Y. Vasseghian, S. Ansar, and M. Soto-Moscoso, “Existence of Ti3+ and dislocation on nanoporous CdO–TiO2 heterostructure applicable for degrading chlorophenol pollutant,” Environ Res, 214, 2022, doi: 10.1016/j.envres.2022.113889.
    [95] B. Palanisamy, CM. Babu, B. Sundaravel, S. Anandan, and V. Murugesan, “Sol-gel synthesis of mesoporous mixed Fe2O3/TiO2 photocatalyst: Application for degradation of 4-chlorophenol,” J Hazard Mater, 252–253, 233–242, 2013, doi: 10.1016/j.jhazmat.2013.02.060.
    [96] AB. Lavand and YS. Malghe, “Visible light photocatalytic degradation of 4-chlorophenol using C/ZnO/CdS nanocomposite,” J Saudi Chem Soc, 19 (5), 471–478, 2015, doi: 10.1016/j.jscs.2015.07.001.
    [97] Y. Wang, Y. Tang, J. Sun, and X. Wu, “BiFeO3/Bi2Fe4O9 S-scheme heterojunction hollow nanospheres for high-efficiency photocatalytic o-chlorophenol degradation,” Appl Catal B, 319, 2022, doi: 10.1016/j.apcatb.2022.121893.
    [98] I. Khan, A. Yuan, A. Khan, and S. Khan, “Efficient Visible-Light Activities of TiO2 decorated and Cr3+ incorporated-porous SmFeO3 for CO2 conversion and 4-chlorophenol degradation,” Surf Interfaces, 2022, doi: 10.1016/j.surfin.2022.102358.
    [99] Z. Zhang, Q. Sun, R. Ji, D. Chen, and N. Li, “Boosted photogenerated charge carrier separation by synergy of oxygen and phosphorus co-doping of graphitic carbon nitride for efficient 2-chlorophenol photocatalytic degradation,” J Chem Eng, 471, 2023, doi: 10.1016/j.cej.2023.144388.
    [100] M. Swedha, A. Alatar, M. Okla, and I. Alaraidh, “Graphitic carbon nitride embedded Ni3(VO4)2/ZnCr2O4 Z-scheme photocatalyst for efficient degradation of p-chlorophenol and 5-fluorouracil, and genotoxic evaluation in Allium cepa,” J Ind Eng Chem, 112, 244–257, 2022, doi: 10.1016/j.jiec.2022.05.018.
    [101] Z. Zhu, F. Liu, H. Zhang, J. Zhang, and L. Han, “Photocatalytic degradation of 4-chlorophenol over Ag/MFe2O4 (M = Co, Zn, Cu, and Ni) prepared by a modified chemical co-precipitation method: A comparative study,” RSC Adv, 5 (68), 55499–55512, 2015, doi: 10.1039/c5ra04608d.
    [102] S. Patnaik, DP. Sahoo, and K. Parida, “An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications,” Renew Sustain Energy Rev, 82, 1297–1312, 2018, doi: 10.1016/j.rser.2017.09.026.
    [103] A. Yuda and A. Kumar, “A review of g-C3N4 based catalysts for direct methanol fuel cells,” Int J Hydrogen Energy, 47 (5), 3371–3395, 2022, doi: 10.1016/j.ijhydene.2021.01.080.
    [104] WA. Abdulnabi, SH. Ammar, and HD. Abdul Kader, “Assembling g-C3N4@phosphomolybdic acid/AgCl photocatalysts for aerobic photocatalytic degradation of organic pollutants,” Inorg Chem Commun, 150, 110533, 2023, doi: 10.1016/J.INOCHE.2023.110533.
    [105] J. Li and Z. Zhang., “MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction,” Nano Mater Sci, 2023, doi: 10.1016/J.NANOMS.2023.02.003.
    [106] HT. Nguyen, HV. Doan, TT. B. Nguyen, and XN. Pham, “Nanoarchitectonics of Ag-modified g-C3N4@halloysite nanotubes by a green method for enhanced photocatalytic efficiency,” Adv Powder Technol, 33 (12), 103862, 2022, doi: 10.1016/J.APT.2022.103862.
    [107] P. Feng, K. Cui, Z. Hai, J. Wang, and L. Wang, “Facile synthesis of activated carbon loaded g-C3N4 composite with enhanced photocatalytic performance under visible light,” Diam Relat Mater, 109921, 2023, doi: 10.1016/J.DIAMOND.2023.109921.
    [108] W. C. Sheets, E. Mugnier, A. Barnabé, T. J. Marks, and K. R. Poeppelmeier, “Hydrothermal synthesis of delafossite-type oxides,” Chem Mater, 18 (1), 7–20, 2006. doi: 10.1021/cm051791c.
    [109] MF. Iozzi, P. Vajeeston, R. Vidya, P. Ravindran, and H. Fjellvåg, “Structural and electronic properties of transparent conducting delafossite: A comparison between the AgBO2 and CuBO2 families (B = Al, Ga, in and Sc, Y),” RSC Adv, 5 (2), 1366–1377, 2015, doi: 10.1039/c3ra47531j.
    [110] MA. Marquardt, NA. Ashmore, and DP. Cann, “Crystal chemistry and electrical properties of the delafossite structure,” Thin Solid Films, 146–156, 2006, doi: 10.1016/j.tsf.2005.08.316.
    [111] T. Lee, M. Ferri, S. Piccinin, and A. Selloni, “Structure, electronic properties, and defect chemistry of delafossite curho2 bulk and surfaces,” Chem Mater, 34 (4), 1567–1577, 2022, doi: 10.1021/acs.chemmater.1c03248.
    [112] SA. Hossain, S. Sarkar, S. Bose, and P. Das, “Synthesis, characterization, and application of delafossites as catalysts for degrading organic pollutants and degradation mechanisms: A detailed insight,” Surf Interfaces, 42, 2023. doi: 10.1016/j.surfin.2023.103281.
    [113] N. Tomar, R. Nagarajan, and C. Shivakumara, “Soft chemical deintercalation of silver from delafossites AgFeO2, and AgCrO2,” Solid State Sci, 108, 2020, doi: 10.1016/j.solidstatesciences.2020.106385.
    [114] M. Kumar and C. Persson, “Structural, electronic and optical properties of silver delafossite oxides: A first-principles study with hybrid functional,” Physica B Condens Matter, 422, 20–27, 2013, doi: 10.1016/j.physb.2013.04.035.
    [115] A. Nacef, M. Mana, R. Baghdad, A. Labdelli, R. Lardjani, and N. Benderdouche, “Optoelectronic, thermoelectric and thermodynamic properties of AgBO2 delafossite structure: An ab initio comparative study with AgAlO2,” Optik, 204, 2020, doi: 10.1016/j.ijleo.2019.164158.
    [116] NSN. Hasnan, MA. Mohamed, and ZA. Mohd Hir, “Surface physicochemistry modification and structural nanoarchitectures of g-c3n4 for wastewater remediation and solar fuel generation,” Adv Mater Technol, 7 (5), 2022. doi: 10.1002/admt.202100993.
    [117] P. Bhatia and SS. Verma, “Enhancement of LSPR properties of temperature-dependent gold nanoparticles,” Mater Today Proc, 78, 871–876, 2023, doi: 10.1016/j.matpr.2022.12.020.
    [118] B. Ma, Q. Xu, H. Yao, and Y. Chen, “Constructing the Cu2O@Au/Cu2O integrated heterostructure cooperated with LSPR effect for enhanced photocatalytic performance via a three-in-one synergy,” J Photochem Photobiol A Chem, 446, 2024, doi: 10.1016/j.jphotochem.2023.115100.
    [119] Z. Deng, G. Meng, X. Fang, W. Dong, J. Shao, S. Wang, and B. Tong, “A novel ammonia gas sensors based on p-type delafossite AgAlO2,” J Alloys Compd, 777, 52–58, 2019, doi: 10.1016/j.jallcom.2018.09.182.
    [120] D. Xiong X. Zeng W. Zhang, and H. Wang, “Synthesis and characterization of CuAlO2 and AgAlO2 delafossite oxides through low-temperature hydrothermal methods,” Inorg Chem, 53 (8), 4106–4116, 2014, doi: 10.1021/ic500090g.
    [121] DA. Svintsitskiy, NA. Sokovikov, EM. Slavinskaya, EA. Fedorova, and AI. Boronin, “Delafossite Ag2CuMnO4 is a novel catalytic material for low-temperature oxidation of co and nh3,” ChemCatChem, 14 (3), 2022, doi: 10.1002/cctc.202101697.
    [122] X. Hou, Y. Duan, Z. Wang, and Q. Lu, “Ferroelectric polarization-enhanced photodegradation performance for dyes in BaTiO3/AgAlO2 heterostructure,” J Alloys Compd, 922, 166291, 2022, doi: 10.1016/J.JALLCOM.2022.166291.
    [123] D. Alenazi, S. Chandrasekaran, M. Soomro, and M. Aslam, “Synthesis, characterization and photocatalytic performance of W6+ impregnated g-C3N4 for the removal of chlorophenol derivatives in natural sunlight exposure,” Chemosphere, 265, 2021, doi: 10.1016/j.chemosphere.2020.129135.
    [124] G. Long, J. Ding, L. Xie, and R. Sun, “Fabrication of mediator-free g-C3N4 /Bi2WO6 Z-scheme with enhanced photocatalytic reduction dechlorination performance of 2,4-DCP,” Appl Surf Sci, 455, 1010–1018, 2018, doi: 10.1016/j.apsusc.2018.06.072.
    [125] KC. Devarayapalli, SVP. Vattikuti, TVM. Sreekanth, KS. Yoo, PC. Nagajyothi, and J. Shim, “Hydrogen production and photocatalytic activity of g-C3N4/Co-MOF (ZIF-67) nanocomposite under visible light irradiation,” Appl Organomet Chem, 34 (3), 2020, doi: 10.1002/aoc.5376.
    [126] S. Karthikeyan, K. Ahmed, K. Osatiashtiani, and A. Alee, “Pompon dahlia-like cu2o/rgo nanostructures for visible light photocatalytic h2 production and 4-chlorophenol degradation,” ChemCatChem, 12 (6), 1699–1709, 2020, doi: 10.1002/cctc.201902048.
    [127] J. Di, J. Xia, S. Yin, and H. Xu, “Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants,” J Mater Chem A Mater, 2 (15), 5340–5351, 2014, doi: 10.1039/c3ta14617k.
    [128] J. Wang, Y. Xia, H. Zhao, and G. Wang, “Oxygen defects-mediated Z-scheme charge separation in g-C3N4/ZnO photocatalysts for enhanced visible-light degradation of 4-chlorophenol and hydrogen evolution,” Appl Catal B, 206, 406–416, 2017, doi: 10.1016/j.apcatb.2017.01.067.
    [129] V. Rathi, A. Panneerselvam, and R. Sathiyapriya, “A novel hydrothermal induced BiVO4/g-C3N4 heterojunctions visible-light photocatalyst for effective elimination of aqueous organic pollutants,” Vacuum, 180, 2020, doi: 10.1016/j.vacuum.2020.109458.
    [130] N. Kumaresan, MMA. Sinthiya, M. Sarathbavan, K. Ramamurthi, K. Sethuraman, and RR. Babu, “Synergetic effect of g-C3N4/ZnO binary nanocomposites heterojunction on improving charge carrier separation through 2D/1D nanostructures for effective photocatalytic activity under the sunlight irradiation,” Sep Purif Technol, 244, 2020, doi: 10.1016/j.seppur.2019.116356.
    [131] M. Ismael, E. Elhaddad, DH. Taffa, and M. Wark, “Solid state route for synthesis of YFeO3/g-C3N4 composites and its visible light activity for degradation of organic pollutants,” Catal Today, 313, 47–54, 2018, doi: 10.1016/j.cattod.2018.02.003.
    [132] N. Ahmad, CFJ. Kuo, and M. Mustaqeem, “Synthesis of novel CuNb2O6/g-C3N4 binary photocatalyst towards efficient visible light reduction of Cr (VI) and dyes degradation for environmental remediation,” Chemosphere, 298, 2022, doi: 10.1016/j.chemosphere.2022.134153.
    [133] AH. Reshak, “First principle calculations of transition metal oxide, agalo2, as active photocatalyst: sustainable alternative sources of energy,” Int J Electrochem Sci, 8, 9371–9383 2013, doi: 10.1016/S1452-3981.23.12976.2
    [134] KC. Bhamu and KR. Priolkar, “Electronic and optical properties of AgAlO2: A first-principles study,” Mater Chem Phys, 190, 114–119, 2017, doi: 10.1016/j.matchemphys.2016.12.069.
    [135] CT. Haile, N. Ahmad, CW. Chiu, and CFJ. Kuo, “Highly photoactive novel NiS/BiOI nanocomposite photocatalyst towards efficient visible light organic pollutant degradation and carcinogenetic Cr (VI) reduction for environmental remediation,” Chemosphere, 323, 2023, doi: 10.1016/j.chemosphere.2023.138108.
    [136] M. Kardeş, HC. Yatmaz, and K. Öztürk, “ZnO nanorods grown on flexible polyurethane foam surfaces for photocatalytic azo dye treatment,” ACS Appl Nano Mater, 6 (8), 6605–6613, 2023, doi: 10.1021/acsanm.3c00210.
    [137] A. Khan, Sonu, A. Sudhaik, P. Raizada, and M. Danish, “Fabrication of direct Z-scheme heterojunction of S doped g-C3N4/Ag/AgI for efficient dye degradation,” Mater Lett, vol. 357, 2024, doi: 10.1016/j.matlet.2023.135666.
    [138] S. Ouyang and J. Ye, “β-AgAl1-xGaxO2 solid-solution photocatalysts: Continuous modulation of electronic structure toward high-performance visible-light photoactivity,” J Am Chem Soc, 133 (20), 7757–7763, 2011, doi: 10.1021/ja110691t.
    [139] Y. Zhao, S. Wang, T. Wei, Y. Ren, and T. Luan, “Enhanced peroxymonosulfate activation for Orange I degradation by g-C3N4/AgFeO2 composite in water,” J Environ Chem Eng, 10 (2), 2022, doi: 10.1016/j.jece.2022.107241.
    [140] S. Al Mamari, FE. Suliman, Y. Kim, and R. Selvaraj, “Three-dimensional maple leaf CdS/g-C3N4 nanosheet composite for photodegradation of benzene in water,” Adv Powder Technol, 34 (6), 2023, doi: 10.1016/j.apt.2023.104026.
    [141] E. Akbarzadeh, SR. Setayesh, and MR. Gholami, “Synthesis of the visible-light-driven Ag3VO4/Ag3PO4/Ag photocatalysts with enhanced photocatalytic activity,” RSC Adv, 6 (18), 14909–14915, 2016, doi: 10.1039/c6ra00279j.
    [142] V. Nguyen, M. Mousavi, J. Ghasemi, S. Delbari, and Q. Le, “Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation,” J Taiwan Inst Chem Eng, 115, 279–292, 2020, doi: 10.1016/j.jtice.2020.10.009.
    [143] J. Du, S. Ma, N. Zhang, and W. Liu, “Efficient photocatalytic organic degradation and disinfection performance for Ag/AgFeO2/g-C3N4 nanocomposites under visible-light: Insights into the photocatalysis mechanism,” Colloids Surf A Physicochem Eng Asp, 654, 2022, doi: 10.1016/j.colsurfa.2022.130094.
    [144] N. Ahmad, CFJ. Kuo, M. Mustaqeem, MK. Hussien, and KH. Chen, “Improved photocatalytic activity of novel NiAl2O4/g-C3N4 binary composite for photodegradation of 2,4-dinitrophenol and CO2 reduction via gas phase adsorption,” Mater Today Phys, 31, 2023, doi: 10.1016/j.mtphys.2023.100965.
    [145] W. Fu, M. Yu, M. Yang, H. Yu, and Y. Yang, “Preparation of pumice stone morphology AgAlO2@zno s-type heterojunction photocatalyst with the synergistic effect of photocatalytic degradation and hydrogen production,” Cryst Growth Des, 23 (4), 2331–2342, 2023, doi: 10.1021/acs.cgd.2c01339.
    [146] X. Zhang, Z. Luo, D. Xu, and S. Zhang, “Preparation of mesoporous AgAlO2 by a two-step method with visible-light-driven photocatalytic activity,” Optoelectron Adv Mater Rapid Commun, 12 (2), 125 – 129, 2018, doi: 14.1015/ oam.2018.100874.
    [147] R. Gundeboina and V. Muga, “Ion exchange synthesis of Ag+ incorporated LiAlO2 and its application in photodegradation of organic dyes,” SN Appl Sci, 1 (2), 2019, doi: 10.1007/s42452-019-0166-4.
    [148] NN. Rao, AK. Dubey, S. Mohanty, P. Khare, R. Jain, and SN. Kaul, “Photocatalytic degradation of 2-chlorophenol: A study of kinetics, intermediates and biodegradability,” J Hazard Mater, 101 (3), 301–314, 2003, doi: 10.1016/S0304-3894(03)00180-8.

    無法下載圖示 全文公開日期 2029/02/06 (校內網路)
    全文公開日期 2029/02/06 (校外網路)
    全文公開日期 2029/02/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE