簡易檢索 / 詳目顯示

研究生: 黃冠騰
Kuan-Teng Huang
論文名稱: 快速光固化懸浮式3D列印成型技術之研究
Development of rapid vat-polymerization Suspension Forming Technology
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 蘇威年
Wei-Nien Su
江卓培
Cho-Pei Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 103
中文關鍵詞: 光固化聚合技術CLIP技術分離力陽離子樹脂超強質子酸懸浮
外文關鍵詞: Vat polymerization, CLIP technology, Separation force, Cationic Resin, Super proton acid, Suspension
相關次數: 點閱:566下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 直到2014年光聚合固化之專利到期後,世界各國學術單位及企業無不積極投入開發及生產,但唯有徹底解決真空吸附力之問題,下照式光聚合固化技術才有機會跨入實際之生產應用。本實驗室過去之研究雖已大幅改善3D列印之分離力之問題,但仍舊無法做出零分離力之技術進一步達成連續列印之目標。
    目前矽谷的Carbon3D公司研發出的CLIP技術(Continuous Liquid Interface Production,連續液面生產),完美的解決分離力之問題,其原理為氧抑制自由基反應,樹脂槽底部的液態樹脂由於接觸氧氣而保持穩定的液態區域,如此就能實現連續列印的概念。本研究將採用類似CLIP技術抑制自由基反應之原理。於陽離子樹脂處建置一電場或磁場,透過控制電場或磁場之強度,使陽離子樹脂光解出的超強質子酸遠離樹脂槽底部,抑制樹脂槽底部產生陽離子聚合反應,形成一層薄薄的不聚合反應之液態區域,以達成零分離力之目標。研究結果發現可以有效地降低列印時產生的分離力,並使得列印的成品完整度提高,其中又以導電薄膜配合環境電場的調控分離力下降最為顯著。期望未來此研究能協助3D列印產業克服目前面臨的列印速度限制,進一步提升3D列印的產業滲透度。


    After the expiration of the patent of photopolymerization, the world's academic units and enterprises are actively involved in the development and production. However, there still is one issue we have to solve, Separation force, to bring "bottom up" type Vat polymerization technology to the real application and production. Although the past research in this laboratory has greatly improved the separation force of 3D printing, still can not make zero separation technology to achieve the goal of continuous printing.
    So far, Silicon Valley's Carbon3D company developed CLIP technology (Continuous Liquid Interface Production), the perfect solution to the separation force problem. The principle is that oxygen is able to inhibit free radical photopolymerization reactions, and liquid resin at the bottom of the resin tank due to contact with oxygen will maintain stable liquid. Therefore, you can achieve the concept of continuous printing. This study will use a similar concept, an electric field or magnetic field is built around the cationic resin. By controlling the electric or magnetic field strength, the super proton acid from the cationic resin will leave the bottom of the resin tank. Thus, the cationic polymerization reaction at the bottom is inhibited and maintains a stable liquid to achieve zero separation force. The results show that the separation force can be effectively reduced and the integrity of the printed part can be improved. Looking to the future this study will help the 3D printing industry to overcome the current printing speed limit, to further enhance the penetration of the 3D printing industry.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 4 1.4 論文架構 5 第二章 文獻探討 7 2.1 積層製造技術 7 2.1.1 VAT Photopolymerization 9 2.2 DMD數位微鏡元件 14 2.2.1 DMD成像原理與動態光罩 14 2.3 離子及配位聚合 17 2.3.1 陽離子聚合 19 2.4 市面上解決/降低分離應力之方法 22 第三章 系統架設及設備簡介 27 3.1 機台架設 27 3.1.1 下照式動態光罩成型系統 27 3.1.2 DLP投影機(Full HD) 28 3.1.3 S型荷重元(S Load cell) 30 3.1.4 電壓記錄器 31 3.2 軟、硬體介紹 32 3.2.1 Arduino 32 3.2.2 光功率量測儀器(Optical Power Meters) 33 3.2.3 灰階值、變形調整軟體 34 3.3 分離力之量測與計算 36 第四章 樹脂調配與性質檢測 38 4.1 樹脂系統介紹 38 4.1.1 陽離子單體及寡聚物 38 4.1.2 光起始劑 40 4.1.3 增感劑 42 4.2 樹脂性質檢測 44 4.2.1 Photo-Differential Scanning Calorimetry 44 4.2.2 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Rays spectroscopy, FTIR)分析 46 4.2.3 鉛筆式硬度計 46 4.3 樹脂性質檢測結果 47 4.3.1 Photo-differential scanning calorimetry 47 4.3.2 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Rays spectroscopy, FTIR)分析 54 4.3.3 鉛筆式硬度計 58 第五章 電場架設與實驗結果 60 5.1 先前研究 60 5.2 電場架設 63 5.3 分離力實驗 64 5.3.1 Teflon薄膜 64 5.3.2 導電玻璃 65 5.3.3 導電薄膜 71 第六章 結論與未來研究方向 75 6.1 結論 75 6.2 未來研究方向 76 參考文獻 77

    【1】Castle Island Co., “The Rapid Prototyping Patent Museum.” [Online]. Available: http://www.additive3d.com/museum/mus_2.htm.
    【2】Wohlers, T. (2016). Wohlers report 2016. Wohlers Associates, Inc.
    【3】Burns, M. (1993). The StL format: standard data format for fabbers. Automated Fabrication.
    【4】Campbell, T., Williams, C., Ivanova, O., & Garrett, B. (2011). Could 3D printing change the world. Technologies, Potential, and Implications of Additive Manufacturing, Atlantic Council, Washington, DC.
    【5】Gibson, I., Rosen, D. W., & Stucker, B. (2010). Additive manufacturing technologies (Vol. 238). New York: Springer.
    【6】Bártolo, P. J. (Ed.). (2011). Stereolithography: materials, processes and applications. Springer Science & Business Media.
    【7】Hatashi, T. (2000). Direct 3D forming using TFT LCD mask. In Proceedings of the 8th International Conference on Rapid Prototyping, Tokyo, Japan (pp. 172-177).
    【8】Bertsch, A., Jiguet, S., Bernhard, P., & Renaud, P. (2002). Microstereolithography: a review. In MRS Proceedings (Vol. 758, pp. LL1-1). Cambridge University Press.
    【9】Bertsch, A., Bernhard, P., Vogt, C., & Renaud, P. (2000). Rapid prototyping of small size objects. Rapid Prototyping Journal, 6(4), 259-266.
    【10】黃育嘉,“動態光罩式三維微影系統之研發,”國立臺灣科技大學, 台北市, 2004.
    【11】王群智,“使用動態光罩微影技術於單層製作3D微小元件之研究,”國立臺灣科技大學, 台北市, 2005.
    【12】“DLPTM技術概要,”德州儀器亞洲區DLP事業部門, 元件科技2003年9月號。
    【13】Douglass, M. R. (1998, March). Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD). In Reliability Physics Symposium Proceedings, 1998. 36th Annual. 1998 IEEE International (pp. 9-16). IEEE.
    【14】鄭正元、汪家昌、沈昌和,“動態光罩模組,”台灣科技大學專利技術.
    【15】金養智, (2010).“光固化材料性能及應用手冊.”
    【16】蔡信行, (1979).“聚合物化學.”文京.
    【17】Formlabs, “Form 2.” [Online]. Available: https://formlabs.com/3d-printers/form-2/?utm_content=main-nav.
    【18】Kudo3D, “Titan 2/Titan 2 HR.” [Online]. Available: https://www.kudo3d.com/titan2-and-titan2-hr/?lang=zh-hant.
    【19】MiiCraft, “MiiCraft 125 series.” [Online]. Available: http://www.miicraft.com/product/.
    【20】Chen, Y., & Zhou, C. (2015). U.S. Patent No. 9,120,270. Washington, DC: U.S. Patent and Trademark Office.
    【21】Syao, K. C. (2016). U.S. Patent No. 9,452,567. Washington, DC: U.S. Patent and Trademark Office.
    【22】Huang, Y. M., & Jiang, C. P. (2005). On-line force monitoring of platform ascending rapid prototyping system. Journal of materials processing technology, 159(2), 257-264.
    【23】Asiga, “The Freeform PRO.” [Online]. Available: https://www.asiga.com/products/printers/pro/.
    【24】YE, J. S. (2016). Research and analysis of Separating Stress on Bottom-Expose Stereolithography 3D Printing System.
    【25】Tumbleston, J. R., Shirvanyants, D., Ermoshkin, N., Janusziewicz, R., Johnson, A. R., Kelly, D., ... & Samulski, E. T. (2015). Continuous liquid interface production of 3D objects. Science, 347(6228), 1349-1352.
    【26】DeSimone, J. M., Ermoshkin, A., Ermoshkin, N., & Samulski, E. T. (2015). U.S. Patent No. 9,205,601. Washington, DC: U.S. Patent and Trademark Office.
    【27】DeSimone, J. M., Ermoshkin, A., Ermoshkin, N., & Samulski, E. T. (2015). U.S. Patent No. 9,216,546. Washington, DC: U.S. Patent and Trademark Office.
    【28】Carbon3D, “Continuous Liquid Interface Production.” [Online]. Available: http://carbon3d.com/.
    【29】NewPro3D, “NewPro3D.” [Online]. Available: http://newpro3d.com/.
    【30】Nexa3D, “Nexa3D.” [Online]. Available: http://www.nexa3d.com/introducing-lspc-technology/.
    【31】CARIMA, “CARIMA-Continuous Additive 3D Printing Technology,” 01-Oct-2015. [Online]. Available: http://www.carima.com/ko/node/138.
    【32】Matyjaszewski, K. (Ed.). (1996). Cationic Polymerizations: Mechanisms, Synthesis & Applications. CRC Press.
    【33】Cowie, J. M. G., & Arrighi, V. (2007). Polymers: Chemistry and physics of modern materials. CRC press.
    【34】Green, W. A. (2010). Industrial photoinitiators: a technical guide. CRC Press.
    【35】Yagci, Y., Jockusch, S., & Turro, N. J. (2010). Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules, 43(15), 6245-6260.
    【36】Yagci, Y., Durmaz, Y. Y., & Aydogan, B. (2007). Phenacyl onium salt photoinitiators: synthesis, photolysis, and applications. The Chemical Record, 7(2), 78-90.
    【37】Crivello, J. V. (1999). The discovery and development of onium salt cationic photoinitiators. Journal of polymer science part A Polymer Chemistry, 37(23), 4241-4254.
    【38】Hsu, Y. G., Wan, Y. S., Lin, W. Y., & Hsieh, W. L. (2010). Cationic Polymerization of cis-2, 3-Tetramethylene-1, 4, 6-trioxaspiro [4, 4] nonane Photosensitized by Anthracene. Macromolecules, 43(20), 8430-8435.
    【39】Hsu, Y. G., & Wan, Y. S. (2009). Cationic photopolymerization of cis‐2, 3‐tetramethylene‐1, 4, 6‐trioxaspiro [4, 4] nonane. Journal of Polymer Science Part A: Polymer Chemistry, 47(14), 3680-3690.
    【40】Durmaz, Y. Y., Kukut, M., Moszner, N., & Yagci, Y. (2009). Sequential photodecomposition of bisacylgermane type photoinitiator: synthesis of block copolymers by combination of free radical promoted cationic and free radical polymerization mechanisms. Journal of Polymer Science Part A: Polymer Chemistry, 47(18), 4793-4799.
    【41】Durmaz, Y. Y., Moszner, N., & Yagci, Y. (2008). Visible light initiated free radical promoted cationic polymerization using acylgermane based photoinitiator in the presence of onium salts. Macromolecules, 41(18), 6714-6718.
    【42】Kura, H., Fujihara, K., Kimura, A., Ohno, T., Matsumura, M., Hirata, Y., & Okada, T. (2001). Initial step of anthracene‐sensitized photoacid generation from diphenyliodonium hexafluorophosphate in an epoxy matrix studied by steady‐state and laser‐flash photolyses. Journal of Polymer Science Part B: Polymer Physics, 39(23), 2937-2946.
    【43】Nelson, E. W., Carter, T. P., & Scranton, A. B. (1994). Fluorescence monitoring of cationic photopolymerizations: divinyl ether polymerizations photosensitized by anthracene derivatives. Macromolecules, 27(4), 1013-1019.
    【44】Sasaki, H., Rudzinński, J. M., & Kakuchi, T. (1995). Photoinitiated cationic polymerization of oxetane formulated with oxirane. Journal of Polymer Science Part A: Polymer Chemistry, 33(11), 1807-1816.
    【45】Sasaki, H. (2000). Oxetanes: Curing Properties in Photo-Cationic Polymerization. Journal of Photopolymer Science and Technology, 13(1), 119-124.
    【46】Mizuta, Y., & Ito, Y. (2006). The Pursuit of Rapid Curing in UV Cationic Polymerization.
    【47】Ravve, A. (1995). Reactions of Polymers. In Principles of Polymer Chemistry (pp 403-486). Springer US.
    【48】Wang, I. C. (2010). The Studies of Plasma Modified Poly (lactic-co-glycolic acid) Copolymer and Poly (methyl methacrylate). National Taiwan University of Science and Technology, Chemical Engineering.
    【49】Hsieh, Y. L., & Wu, M. (1991). Residual reactivity for surface grafting of acrylic acid on argon glow‐discharged poly (ethylene terephthalate)(PET) films. Journal of applied polymer science, 43(11), 2067-2082.
    【50】Chan, C. M. (1993). Polymer surface modification and characterization. Carl Hanser, GmbH & Co.

    無法下載圖示 全文公開日期 2022/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE