簡易檢索 / 詳目顯示

研究生: 翁兆億
Jhao-Yi Wong
論文名稱: 層狀化合物負載原子分散氫氧化鉑觸媒用於鹼性介質下涉及氧的能量轉換反應
Layered-compound supported atomically dispersed platinum hydroxide catalyst for oxygen-involving energy conversion reactions under alkaline media
指導教授: 黃炳照
Bing Joe Huang
口試委員: 黃炳照
Bing-Joe Huang
蘇威年
Wei-Nien Su
蔡孟哲
Meng-Che Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 121
中文關鍵詞: 鎳鐵層狀雙氫氧化物析氧反應水電解反應過氧化氫二電子氧氣還原電催化劑
外文關鍵詞: nickel-iron layered double hydroxide, oxygen evolution reaction, water electrolysis reaction, hydrogen peroxide, two-electron oxygen reduction, electrocatalyst
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究開發一新型電催化觸媒,可應用於電化學槽內作為陽極及陰極觸媒,並同時進行氧氣析出(OER)及氧氣還原(ORR),能有效的產生過氧化氫(H2O2),其為高單價產品與燃料,並可達到符合經濟效益及儲能的效果,目前於水電解反應的研究又以析氧反應居多,其因為反應緩慢與觸媒活性等問題造成應用上的不便。而目前於ORR中產H2O2的觸媒,多苦於低選擇性與低質量活性等問題,造成現行H2O2生產,仍以傳統式高耗能的蒽醌法(anthraquinone process)合成。因此本研究以非貴金屬鎳鐵層狀雙氫氧化物(NiFe LDH)作為主體,並以鉑氫氧化物(Pt(OH)x)嵌入其層間,藉此提升整體析氧與H2O2選擇性與產量。此觸媒主體對OER與產H2O2反應原始就有一定的活性,並藉由無活性的Pt 進行氧化還原並嵌入來達到提升雙活性的效果。
觸媒的製備方式先以簡便的水熱法合成NiFe LDH,並利用共沉澱法將Pt(OH)x嵌入層狀結構。其中因為想增加Pt(OH)x含量與確認結構穩定,並保持單原子的型態,我們更利用了本實驗室過去曾使用的方法,合成帶負電的Pt(OH)x2-,以利於在室溫下能將其嵌入層間並維持單原子型式,並經測試後得知其在pH13與24hr時有較佳的合成條件。
研究結果顯示, Pt(OH)x以單金屬氫氧化物的方式存在3.25%Pt SA/NiFe LDH觸媒中,使Pt由原始的低活性轉變為高活性位點。其中Pt(OH)x與NiFe LDH上的Ni具有較強的作用力(並無直接鍵結),造成Ni原子電子雲密度稀缺,使整體H2O2選擇性從87%提升至92%,且質量活性也能從19.23 A/g提升至62.22 A/g,為未嵌入Pt(OH)x時3倍量,於XRD與FTIR分析,能得知Pt(OH)x是以陰離子形態存在於層間,能有效的降低NiFe LDH厚度,並提升活性面積與層間距,且其與SO42-間具有作用力,造成整體活性位增加,且使H2O2選擇性與產量大幅提升,亦能有效提升穩定性。


A new bifunctional electrocatalytic catalyst has been developed for the oxygen-involving energy conversion reactions. It can be used as anode and cathode catalysts in electrochemical cells, and perform oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), where hydrogen peroxide (H2O2) can be effectively produced with potential economic benefits and perspectives in energy storage. Currently, most research activities about water electrolysis reaction are related to oxygen evolution reaction, whose sluggish reaction kinetics and limited activity cause inconvenience in applications. In addition, the electrocatalysts suitable for H2O2 production in ORR usually suffer from low selectivity and low mass activity. The challenges explain why current production of H2O2 still rely on the traditional and energy-intenstive anthraquinone process. Therefore, in this research, the non-precious metal nickel-iron layered double hydroxide (NiFe LDH) was used as the carrier, and platinum hydroxide (Pt(OH)x) was inserted between the layers to improve the overall oxygen evolution reaction and H2O2 selectivity and mass activity. This NiFe LDH catalyst carrier is known for its activity for the oxygen evolution and H2O2 production reactions, and it is hoped that the dual activity can be further enhanced by redox and intercalated inactive Pt.
NiFe LDH was synthesized by a facile hydrothermal method and Pt(OH)x was prepared by a co-precipitation method to intecalate between layered structure. Since Pt(OH)x exists in a state of single-atom/ionic cluster and confirm the stability of the structure, this allows us to increase the content of Pt(OH)x, while maintaining it in the single-atom form. A method previously developed in our laboratory was then applied to synthesize negatively charged Pt(OH)x2- at room temperature for this purpose. It is confirmed that Pt(OH)x2- ions are intercalated between the layers and maintain a singl-atom form. After measuring, the condition of synthesis is found that it has better synthesis conditions at pH 13 and 24 hr.
The research results show that Pt(OH)x exists in the 3.25% Pt SA/NiFe LDH catalyst in the form of single metal hydroxide, which makes Pt change from the original low activity to the high activity site. Among them, the Ni has a strong interaction (no direct bonding) toward Pt(OH)x, so that Ni atom electron cloud density decreased and, the overall H2O2 selectivity of the composite electrocatalyst increases from 87% to 92%, and the mass activity can also be increased from 19.23 A/g to 62.22 A/g, which is 3 times higher than the amount when Pt(OH)x was not embedded. Confirmed by the XRD and FTIR analyses, Pt(OH)x exists in the form of anion between the layers, which can effectively reduce the thickness of NiFe LDH, and increase the active area and layer spacing. It has a force between the anions, resulting in an increase in the overall active sites, and H2O2 selective and the mass activity has been greatly increased, and the stability is also improved.

摘要 I 致謝 VII 目錄 IX 圖目錄 XI 表目錄 XVI 第1章 緒論 1 1.1 氧氣轉換反應 1 1.2 水電解 3 1.2.1 水電解之簡介 3 1.2.2 水電解之應用 4 1.2.3 氧氣析出之反應機制 5 1.2.4 氧氣析出之催化劑 6 1.3 電解合成過氧化氫 11 1.3.1 氧氣還原之反應機制 11 1.3.2 過氧化氫之市場 11 1.3.3 過氧化氫之合成法 12 1.3.4 過氧化氫之催化劑選擇 13 1.3.5 電解液與pH值效應 16 1.4 研究動機與目的 21 第2章 文獻回顧 23 2.1 鎳鐵層狀雙氫氧化物之改質 24 2.2 過氧化氫之鉑金屬發展 30 第3章 實驗方法與設備 36 3.1 實驗藥品 36 3.2 實驗設備 37 3.3 實驗步驟 38 3.3.1 水熱法合成鎳鐵層狀雙氫氧化物NiFe LDH 38 3.3.2 氫氧化鉑陰離子嵌入鎳鐵層狀雙氫氧化物 39 3.4 樣品清單與命名 39 3.5 材料鑑定與分析 40 3.5.1 X射線繞射儀 (XRD) 40 3.5.2 掃描式電子顯微鏡 (FE-SEM) 42 3.5.3 場發射穿透式電子顯微鏡 (FE-TEM) 44 3.5.4 傅立葉紅外線光譜儀 (FTIR) 46 3.5.5 感應耦合電漿原子發射光譜儀 (ICP-OES) 46 3.5.6 X射線光電子能譜 (XPS) 47 3.5.7 X光吸收光譜 (XAS) 47 3.5.8 電化學測試與計算 50 第4章 結果與討論 58 4.1 層狀鎳鐵氫氧化物最適化條件與電極負載量 58 4.1.1 pH值與時間影響 58 4.1.2 不同觸媒負載量於旋轉還盤電極上 59 4.2 崁入鉑氫氧化物之單原子鑑定 64 4.2.1 SEM表面型態觀測 64 4.2.2 TEM表面型態分析 65 4.2.3 XAS價態與結構分析 66 4.3 改質後雙氫氧物之鑑定 72 4.3.1 XRD與FTIR材料結構鑑定 72 4.3.2 XAS價態與結構分析 75 4.3.1 XPS表面鑑定分析 79 4.4 鉑氫氧化物負載量對氧催化活性的影響 83 4.4.1 氧氣析出 83 4.4.2 過氧化氫生成 86 4.4.3 穩定性 90 第5章 結論 95 第6章 未來展望 96 參考文獻 97

1. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y., Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. J Phys Chem Lett 2012, 3 (3), 399-404.
2. Mohammed-Ibrahim, J., A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction. Journal of Power Sources 2020, 448.
3. Anson, C. W.; Stahl, S. S., Processes for Electrochemical Production of Electrolyte-free Hydrogen Peroxide. Joule 2019, 3 (12), 2889-2891.
4. Papagiannis, I.; Balis, N.; Dracopoulos, V.; Lianos, P., Photoelectrocatalytic Hydrogen Peroxide Production Using Nanoparticulate WO3 as Photocatalyst and Glycerol or Ethanol as Sacrificial Agents. Processes 2019, 8 (1).
5. Levie, R. d., The electrolysis of water. Electroanalytical Chemistry 1999.
6. Chisholm, G.; Cronin, L., Hydrogen From Water Electrolysis. In Storing Energy, 2016; pp 315-343.
7. Shiva Kumar, S.; Himabindu, V., Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies 2019, 2 (3), 442-454.
8. Adnan Rashad, A.; A. Rashad, E.; A. Ali, A.; Akram, E.; M. Al-Rubaye, M.; Yousif, E.; Hairunisa, N., Hydrogen in fuel cells: An overview of promotions and demotions. Interdisciplinary Journal of Chemistry 2017, 2 (2).
9. Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 2017, 46 (2), 337-365.
10. Li, X.; Cheng, Z.; Wang, X., Understanding the Mechanism of the Oxygen Evolution Reaction with Consideration of Spin. Electrochemical Energy Reviews 2020, 4 (1), 136-145.
11. Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J.-P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A.; Mayrhofer, K. J. J., Oxygen and hydrogen evolution reactions on Ru, RuO 2 , Ir, and IrO 2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catalysis Today 2016, 262, 170-180.
12. Umicore Precious Metals Management.
13. Xu, X.; Wang, W.; Zhou, W.; Shao, Z., Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energy-Related Applications. Small Methods 2018, 2 (7).
14. Chilvery, A.; Das, S.; Guggilla, P.; Brantley, C.; Sunda-Meya, A., A perspective on the recent progress in solution-processed methods for highly efficient perovskite solar cells. Sci Technol Adv Mater 2016, 17 (1), 650-658.
15. Bragg, W. H., The Structure of Magnetite and the Spinels. Nature 1915, 95, 561.
16. Nishikawa, S., Structure of Some Crystals of Spinel Group. Proc. Math. Phys. Soc. 1915, 8, 199-209.
17. Muscas, G.; Yaacoub, N.; Concas, G.; Sayed, F.; Sayed Hassan, R.; Greneche, J. M.; Cannas, C.; Musinu, A.; Foglietti, V.; Casciardi, S.; Sangregorio, C.; Peddis, D., Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Nanoscale 2015, 7 (32), 13576-85.
18. Liu, H.; Wang, Y.; Lu, X.; Hu, Y.; Zhu, G.; Chen, R.; Ma, L.; Zhu, H.; Tie, Z.; Liu, J.; Jin, Z., The effects of Al substitution and partial dissolution on ultrathin NiFeAl trinary layered double hydroxide nanosheets for oxygen evolution reaction in alkaline solution. Nano Energy 2017, 35, 350-357.
19. Lu, Z.; Qian, L.; Tian, Y.; Li, Y.; Sun, X.; Duan, X., Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chem Commun (Camb) 2016, 52 (5), 908-11.
20. Ping, J.; Wang, Y.; Lu, Q.; Chen, B.; Chen, J.; Huang, Y.; Ma, Q.; Tan, C.; Yang, J.; Cao, X.; Wang, Z.; Wu, J.; Ying, Y.; Zhang, H., Self-Assembly of Single-Layer CoAl-Layered Double Hydroxide Nanosheets on 3D Graphene Network Used as Highly Efficient Electrocatalyst for Oxygen Evolution Reaction. Adv Mater 2016, 28 (35), 7640-5.
21. Hunter, B. M.; Hieringer, W.; Winkler, J. R.; Gray, H. B.; Müller, A. M., Effect of interlayer anions on [NiFe]-LDH nanosheet water oxidation activity. Energy & Environmental Science 2016, 9 (5), 1734-1743.
22. Song, F.; Hu, X., Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun 2014, 5, 4477.
23. Miao, M.; Han, X.; Jia, R.; Ma, W.; Han, G., Synthesis and Electrocatalytic Properties of Ni–Fe-Layered Double Hydroxide Nanomaterials. In Energy Technology 2019, 2019; pp 293-301.
24. Bukhtiyarova, M. V., A review on effect of synthesis conditions on the formation of layered double hydroxides. Journal of Solid State Chemistry 2019, 269, 494-506.
25. Li, Y.; Li, Q.; Wang, H.; Zhang, L.; Wilkinson, D. P.; Zhang, J., Recent Progresses in Oxygen Reduction Reaction Electrocatalysts for Electrochemical Energy Applications. Electrochemical Energy Reviews 2019, 2 (4), 518-538.
26. Pulidindi;, K.; Pandey, H. Hydrogen Peroxide Market Size by End-user Industry.
27. Riedl, H.; Pfleiderer, G., Production of hydrogen peroxide. US Patent US2,158,525: 1939.
28. Yang, S.; Verdaguer-Casadevall, A.; Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L., Toward the Decentralized Electrochemical Production of H2O2: A Focus on the Catalysis. ACS Catalysis 2018, 8 (5), 4064-4081.
29. Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L., Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl 2006, 45 (42), 6962-84.
30. Viswanathan, V.; Hansen, H. A.; Rossmeisl, J.; Norskov, J. K., Unifying the 2e(-) and 4e(-) Reduction of Oxygen on Metal Surfaces. J Phys Chem Lett 2012, 3 (20), 2948-51.
31. Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett 2014, 14 (3), 1603-8.
32. Barros, W. R. P.; Wei, Q.; Zhang, G.; Sun, S.; Lanza, M. R. V.; Tavares, A. C., Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochimica Acta 2015, 162, 263-270.
33. Sun, Y.; Sinev, I.; Ju, W.; Bergmann, A.; Dresp, S.; Kühl, S.; Spöri, C.; Schmies, H.; Wang, H.; Bernsmeier, D.; Paul, B.; Schmack, R.; Kraehnert, R.; Roldan Cuenya, B.; Strasser, P., Efficient Electrochemical Hydrogen Peroxide Production from Molecular Oxygen on Nitrogen-Doped Mesoporous Carbon Catalysts. ACS Catalysis 2018, 8 (4), 2844-2856.
34. Shen, R.; Chen, W.; Peng, Q.; Lu, S.; Zheng, L.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J.; Zhuang, Z.; Chen, C.; Wang, D.; Li, Y., High-Concentration Single Atomic Pt Sites on Hollow CuSx for Selective O2 Reduction to H2O2 in Acid Solution. Chem 2019, 5 (8), 2099-2110.
35. Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J.; Yang, P.; McCloskey, B. D., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nature Catalysis 2018, 1 (4), 282-290.
36. Pang, Y.; Xie, H.; Sun, Y.; Titirici, M.-M.; Chai, G.-L., Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms. Journal of Materials Chemistry A 2020, 8 (47), 24996-25016.
37. Wei, Y.; Li, F.; Liu, L., Liquid exfoliation of Zn–Al layered double hydroxide using NaOH/urea aqueous solution at low temperature. RSC Advances 2014, 4 (35).
38. Bing Joe Hwang; Ching-Hsiang Chen; Loka Subramanyam Sarma; Jiun-Ming Chen; Guo-Rung Wang; Mau-Tsu Tang; Din-Goa Liu; Lee, J.-F., Probing the Formation Mechanism and Chemical States of Carbon-Supported Pt-Ru Nanoparticles by in Situ X-ray Absorption Spectroscopy. Physics and Chemistry B 2006, 110, 6475-6482.
39. Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H., An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 2013, 135 (23), 8452-5.
40. Han, N.; Zhao, F.; Li, Y., Ultrathin nickel–iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. Journal of Materials Chemistry A 2015, 3 (31), 16348-16353.
41. Li, X.; Hao, X.; Wang, Z.; Abudula, A.; Guan, G., In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting. Journal of Power Sources 2017, 347, 193-200.
42. Luo, M.; Cai, Z.; Wang, C.; Bi, Y.; Qian, L.; Hao, Y.; Li, L.; Kuang, Y.; Li, Y.; Lei, X.; Huo, Z.; Liu, W.; Wang, H.; Sun, X.; Duan, X., Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Research 2017, 10 (5), 1732-1739.
43. Xue, X.; Yu, F.; Peng, B.; Wang, G.; Lv, Y.; Chen, L.; Yao, Y.; Dai, B.; Shi, Y.; Guo, X., One-step synthesis of nickel–iron layered double hydroxides with tungstate acid anions via flash nano-precipitation for the oxygen evolution reaction. Sustainable Energy & Fuels 2019, 3 (1), 237-244.
44. Wang, Z.; Xu, S. M.; Xu, Y.; Tan, L.; Wang, X.; Zhao, Y.; Duan, H.; Song, Y. F., Single Ru atoms with precise coordination on a monolayer layered double hydroxide for efficient electrooxidation catalysis. Chem Sci 2019, 10 (2), 378-384.
45. Siahrostami, S.; Verdaguer-Casadevall, A.; Karamad, M.; Deiana, D.; Malacrida, P.; Wickman, B.; Escudero-Escribano, M.; Paoli, E. A.; Frydendal, R.; Hansen, T. W.; Chorkendorff, I.; Stephens, I. E.; Rossmeisl, J., Enabling direct H2O2 production through rational electrocatalyst design. Nat Mater 2013, 12 (12), 1137-43.
46. Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J.; Kim, H.; Choi, M., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat Commun 2016, 7, 10922.
47. Yang, S.; Tak, Y. J.; Kim, J.; Soon, A.; Lee, H., Support Effects in Single-Atom Platinum Catalysts for Electrochemical Oxygen Reduction. ACS Catalysis 2017, 7 (2), 1301-1307.
48. 中國物體技術網, 掃描電子顯微鏡SEM_從基礎出發,一切盡在掌控中. 2016.
49. 李志甫, 同步輻射在觸媒化學上之應用. 2016.
50. Chen, R.; Hung, S. F.; Zhou, D.; Gao, J.; Yang, C.; Tao, H.; Yang, H. B.; Zhang, L.; Zhang, L.; Xiong, Q.; Chen, H. M.; Liu, B., Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction. Adv Mater 2019, 31 (41), e1903909.
51. Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S., Simultaneously Achieving High Activity and Selectivity toward Two-Electron O2 Electroreduction: The Power of Single-Atom Catalysts. ACS Catalysis 2019, 9 (12), 11042-11054.
52. Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; Liu, W.; Sun, X., Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat Commun 2019, 10 (1), 1711.
53. Kim, Y. S.; Bostwick, A.; Rotenberg, E.; Ross, P. N.; Hong, S. C.; Mun, B. S., The study of oxygen molecules on Pt (111) surface with high resolution x-ray photoemission spectroscopy. J Chem Phys 2010, 133 (3), 034501.
54. Cai, Z.; Zhou, D.; Wang, M.; Bak, S. M.; Wu, Y.; Wu, Z.; Tian, Y.; Xiong, X.; Li, Y.; Liu, W.; Siahrostami, S.; Kuang, Y.; Yang, X. Q.; Duan, H.; Feng, Z.; Wang, H.; Sun, X., Introducing Fe(2+) into Nickel-Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angew Chem Int Ed Engl 2018, 57 (30), 9392-9396.
55. Li, Z.; Shao, M.; An, H.; Wang, Z.; Xu, S.; Wei, M.; Evans, D. G.; Duan, X., Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chem Sci 2015, 6 (11), 6624-6631.
56. Yang, H.; Luo, S.; Bao, Y.; Luo, Y.; Jin, J.; Ma, J., In situ growth of ultrathin Ni–Fe LDH nanosheets for high performance oxygen evolution reaction. Inorganic Chemistry Frontiers 2017, 4 (7), 1173-1181.
57. Thenuwara, A. C.; Attanayake, N. H.; Yu, J.; Perdew, J. P.; Elzinga, E. J.; Yan, Q.; Strongin, D. R., Cobalt Intercalated Layered NiFe Double Hydroxides for the Oxygen Evolution Reaction. J Phys Chem B 2018, 122 (2), 847-854.
58. Nejati, K.; Davari, S.; Akbari, A.; Asadpour-Zeynali, K.; Rezvani, Z., A highly active oxygen evolution electrocatalyst: Ni-Fe-layered double hydroxide intercalated with the Molybdate and Vanadate anions. International Journal of Hydrogen Energy 2019, 44 (29), 14842-14852.
59. Zheng, Z.; Ng, Y. H.; Wang, D. W.; Amal, R., Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2 O2 Production. Adv Mater 2016, 28 (45), 9949-9955.

無法下載圖示 全文公開日期 2024/08/25 (校內網路)
全文公開日期 2024/08/25 (校外網路)
全文公開日期 2024/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE