簡易檢索 / 詳目顯示

研究生: 葉麗仙
Yap Lie Sian
論文名稱: 以Pluronics 混摻Carboxymethyl Hexanoyl Chitosan 製作之溫度敏感可注射型水膠在細胞包覆之應用研究
Thermoresponsive injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation in tissue engineering applications
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
李振綱
Cheng-Kang Lee
高震宇
Chen-Yu Kao
楊台鴻
Tai-Horng Young
鄭劍廷
Chiang-Ting Chien
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 65
中文關鍵詞: 注射水凝膠組織工程Pluronics F127Carboxmethyl hexanoyl chitosan細胞包覆
外文關鍵詞: Injectable hydrogel, Tissue Engineering, Pluronics F127, Carboxmethyl hexanoyl chitosan, Cell encapsulation
相關次數: 點閱:347下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文將Pluronic F127混摻carboxymethyl hexanoyl chitosan (CA),形成一種溫度敏感可注射型水膠,作為封裝細胞的組織工程支架。本論文分成兩個部分來敘述每個注射支架的研發過程。
本研究的第一部分是F127,CA和戊二醛(GA)組成的新型水膠體系,用於包封成纖維細胞(L-929)和人胎兒成骨細胞(hFOB 1.19)。該水膠在水性環境能維持長時間的完整性,以實現較長久的封裝。水膠的熱性質係使用熱重分析(TGA)和示差掃描量熱法(DSC)來測定。在Dulbecco's Modified Eagle's培養基(DMEM)中評估水凝膠的溶脹行為,並通過動態力學分析(DMA)測定機械性能。經由簡單混合包封細胞,並使用alamar blue細胞活力測定法確定包封細胞的活力,並使用螢光成像檢查細胞形態。結果顯示,該系統的Tgel為30℃左右,溶膠 - 凝膠轉化發生在90秒以內。儘管CA和GA的加入稍微降低了剪切模量,但F127/CA/GA凝膠仍能在介質中保持凝膠狀態超過1個月。體外細胞培養研究發現F127/CA/GA水凝膠是非細胞毒性的。此外,包覆的L-929的活性在培養5天后為106%。基於這些結果,這些F127/CA/GA水膠可用於組織工程的包封細胞。
第二部分係由F127,CA和乙二醛(Gx)組成的熱可逆注射水膠上。這種類型的水膠可以使用的時間更長。水膠與Gx交聯,水膠變成凝膠狀態。使用流變儀來研究水膠的化學和機械性質。在本研究中也確定了溶脹比,完整性和凝膠化時間。水膠的凝膠化時間短於80s,凝膠化溫度為25-37℃。水凝膠可以在水性環境中保持凝膠狀態超過1個月。體外毒性試驗也顯示水膠能夠包覆細胞。L-929細胞培養5天後的的細胞活性比初始狀態增加20%。結果顯示,該水膠具有可以被當作細胞包覆之可注射支架。


A thermoresponsive injectable hydrogel based on Pluronic F127 and carboxymethyl hexanoyl chitosan (CA) was developed in this thesis for encapsulating cells as tissue engineering scaffold. This thesis is presented in two parts to describe the development of this injectable scaffold.
The first part of this research is to design a novel hydrogel system composing of F127, CA and glutaraldehyde (GA) for encapsulating fibroblasts (L-929) and human fetal osteoblast (hFOB 1.19). This hydrogel was designed to improve the integrity in the aqueous environment for longer encapsulation. The thermal behavior of the hydrogel was evaluated using Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The swelling behavior of the hydrogel was evaluated in Dulbecco's Modified Eagle's medium (DMEM), and the mechanical properties were determined through dynamic mechanical analysis (DMA). Cells were encapsulated by simple mixing, and the viability of encapsulated cells was determined using alamar blue cell viability assay and the cells morphology was examined using fluorescent imaging. The results indicated that the gelation temperature (Tgel) of this system was around 30°C, when the sol-gel transformation occurred within 90 s. Although the addition of CA and GA reduced the shear moduli slightly, the F127/CA/GA gel was able to remain in gelling state in the medium for more than 1 month. In vitro cell culture study revealed that F127/CA/GA hydrogels were non-cytotoxic. Moreover, the viability of encapsulated L-929 was 106% after incubation for 5 days. Based on these results, these F127/CA/GA hydrogels can be used to encapsulate cells for tissue engineering applications.
The second part is concentrated on thermoreversible injectable hydrogel composing of F127, CA, and glyoxal (Gx). This type of hydrogel can be used for longer time. Being crosslinked with Gx, this hydrogel system exhibited thermoreversibility; it reverted to the liquid state when cooled below Tgel. The mechanical properties of the hydrogel were investigated using rheometer. The swelling ratio, integrity, and gelation time were also determined. The hydrogel exhibited gelation time shorter than 80 s, and the gelation temperature is in the range 25-37C. The hydrogel can maintain the gel state in the aqueous environment for more than 1 month. The in vitro toxicity test also revealed that hydrogel was able to encapsulate cell without toxicity effect. The cell viability of L-929 cells at 5-day incubation was increased 20% higher than the initial state. The results suggested that this hydrogel could be a promising scaffold for cell-encapsulation.

DOCTORAL DISSERTATION RECOMMENDATION FORM II QUALIFICATION FORM BY DOCTORAL DEGREE EXAMINATION COMMITTEE III 摘要 IV ABSTRACT VI ACKNOWLEDGEMENT VIII TABLE OF CONTENTS IX LIST OF FIGURES XI LIST OF TABLES XIII LIST OF ABBREVIATION XIV I. INTRODUCTION 1 I.1. BACKGROUND 1 I.2. RESEARCH OBJECTIVES AND AIMS OF THIS STUDY 3 II. LITERATURE REVIEW 5 II.1. PLURONIC 6 II.2. CARBOXYMETHYL HEXANOYL CHITOSAN 10 II.3. GLUTARALDEHYDE 13 II.4. GLYOXAL 14 III. PART I 17 EVALUATION OF HYDROGEL COMPOSING OF PLURONIC F127 AND CARBOXYMETHYL HEXANOYL CHITOSAN AS INJECTABLE SCAFFOLD FOR TISSUE ENGINEERING APPLICATIONS 17 III.1. EXPERIMENTAL SECTIONS 17 III.1.1. Materials 17 III.1.2. Experiments apparatus and instruments 18 III.1.3. Preparation of hydrogel solutions 19 III.1.4. Rheological characterization 19 III.1.5. Swelling behavior 19 III.1.6. Gelation time 20 III.1.7. Microstructure of hydrogel 20 III.1.8. Thermal studies 20 III.1.9. Cell-encapsulation 21 III.1.10. Cell morphology by using fluorescence microscope 22 III.1.11. Cell morphology using confocal microscope 23 III.2. RESULTS AND DISCUSSION 23 IV. PART II 40 THERMO-REVERSIBLE INJECTABLE HYDROGEL COMPOSING OF PLURONIC F127 AND CARBOXYMETHYL HEXANOYL CHITOSAN FOR CELL-ENCAPSULATION. 40 IV.1. EXPERIMENTAL SECTIONS 40 IV.1.1. Materials 40 IV.1.2. Experiments apparatus and instruments 41 IV.1.3. Preparation of hydrogel solutions 41 IV.1.4. Rheological characterization 42 IV.1.5. Swelling behavior 42 IV.1.6. Gelation time 43 IV.1.7. Cell-encapsulation 43 IV.1.8. Cell morphology 44 IV.2. RESULT AND DISCUSSION 45 IV.2.1. Gelation of F127/CA/Gx 45 IV.2.2. Thermo-reversibility of F127/CA/Gx 46 IV.2.3. Swelling behavior of F127/CA/Gx 47 IV.2.4. Dynamic mechanical properties 49 IV.2.5. Viability of encapsulated cells in F127/CA/Gx 49 IV.2.6. Survivability of encapsulated cells 52 V. CONCLUSION AND FUTURE WORK 56 V.1. CONCLUSION 56 V.2. FUTURE WORK 57 VI. REFERENCES 58 VII. AUTHOR INTRODUCTION 65

[1] F.J. O'Brien, Biomaterials & scaffolds for tissue engineering, Materials Today, 14 (2011) 88-95.
[2] Y. Wang, S. Tu, A.N. Pinchuk, M.P. Xiong, Active drug encapsulation and release kinetics from hydrogel-in-liposome nanoparticles, Journal of colloid and interface science, 406 (2013) 247-255.
[3] B. Srividya, R.M. Cardoza, P.D. Amin, Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system, Journal of Controlled Release, 73 (2001) 205-211.
[4] S.D. Desai, J. Blanchard, Evaluation of Pluronic F127-based sustained-release ocular delivery systems for pilocarpine using the albino rabbit eye model, Journal of pharmaceutical sciences, 87 (1998) 1190-1195.
[5] Y. Hong, H. Song, Y. Gong, Z. Mao, C. Gao, J. Shen, Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation, Acta biomaterialia, 3 (2007) 23-31.
[6] J.S. Temenoff, H. Park, E. Jabbari, T.L. Sheffield, R.G. LeBaron, C.G. Ambrose, A.G. Mikos, In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels, Journal of biomedical materials research. Part A, 70 (2004) 235-244.
[7] J.S. Temenoff, H. Park, E. Jabbari, D.E. Conway, T.L. Sheffield, C.G. Ambrose, A.G. Mikos, Thermally Cross-Linked Oligo(poly(ethylene glycol) fumarate) Hydrogels Support Osteogenic Differentiation of Encapsulated Marrow Stromal Cells In Vitro, Biomacromolecules, 5 (2003) 5-10.
[8] H.J. Chung, Y. Lee, T.G. Park, Thermo-sensitive and biodegradable hydrogels based on stereocomplexed Pluronic multi-block copolymers for controlled protein delivery, Journal of controlled release : official journal of the Controlled Release Society, 127 (2008) 22-30.
[9] C. He, S.W. Kim, D.S. Lee, In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery, Journal of controlled release : official journal of the Controlled Release Society, 127 (2008) 189-207.
[10] J. Jagur-Grodzinski, Polymeric gels and hydrogels for biomedical and pharmaceutical applications, Polymers for Advanced Technologies, 21 (2010) 27-47.
[11] S.R. Van Tomme, G. Storm, W.E. Hennink, In situ gelling hydrogels for pharmaceutical and biomedical applications, International journal of pharmaceutics, 355 (2008) 1-18.
[12] L. Mayol, F. Quaglia, A. Borzacchiello, L. Ambrosio, M.I.L. Rotonda, A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: Rheological, mucoadhesive and in vitro release properties, European Journal of Pharmaceutics and Biopharmaceutics, 70 (2008) 199-206.
[13] T.A. Sonia, C.P. Sharma, N-hydroxypropyltrimethylammonium polydimethylaminoethylmethacrylate sub-microparticles for oral delivery of insulin—An in vitro evaluation, Colloids and Surfaces B: Biointerfaces, 107 (2013) 205-212.
[14] N.E. Fedorovich, J. Alblas, J.R. de Wijn, W.E. Hennink, A.J. Verbout, W.J. Dhert, Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing, Tissue engineering, 13 (2007) 1905-1925.
[15] Z. Huang, B. Yu, Q. Feng, S. Li, Y. Chen, L. Luo, In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells, Carbohydrate Polymers, 85 (2011) 261-267.
[16] J.P. Chen, M.J. Tsai, H.T. Liao, Incorporation of biphasic calcium phosphate microparticles in injectable thermoresponsive hydrogel modulates bone cell proliferation and differentiation, Colloids and surfaces. B, Biointerfaces, 110 (2013) 120-129.
[17] B.L. Foss, T.W. Maxwell, Y. Deng, Chondroprotective supplementation promotes the mechanical properties of injectable scaffold for human nucleus pulposus tissue engineering, Journal of the mechanical behavior of biomedical materials, 29 (2014) 56-67.
[18] K.M. Park, S.Y. Lee, Y.K. Joung, J.S. Na, M.C. Lee, K.D. Park, Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration, Acta biomaterialia, 5 (2009) 1956-1965.
[19] K.M. Park, D.H. Kim, J.W. Bae, Y.K. Joung, J.W. Shin, K.D. Park, Injectable Chitosan-Pluronic Hydrogel Releasing Osteogenic Protein-1 for the Regeneration of Intervetebral Disc Biomaterials research, 12 (2008) 24-27.
[20] S.B. Anderson, C.C. Lin, D.V. Kuntzler, K.S. Anseth, The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels, Biomaterials, 32 (2011) 3564-3574.
[21] E. Lippens, G. Vertenten, J. Gironès, H. Declercq, J. Saunders, J. Luyten, L. Duchateau, E. Schacht, L. Vlaminck, F. Gasthuys, M. Cornelissen, Evaluation of Bone Regeneration with an Injectable, In Situ Polymerizable Pluronic® F127 Hydrogel Derivative Combined with Autologous Mesenchymal Stem Cells in a Goat Tibia Defect Model, Tissue Engineering Part A, 16 (2009) 617-627.
[22] T. Al Kayal, D. Panetta, B. Canciani, P. Losi, M. Tripodi, S. Burchielli, P. Ottoni, P.A. Salvadori, G. Soldani, Evaluation of the Effect of a Gamma Irradiated DBM-Pluronic F127 Composite on Bone Regeneration in Wistar Rat, PloS one, 10 (2015) e0125110.
[23] Y.-Z. Zhao, H.-F. Lv, C.-T. Lu, L.-J. Chen, M. Lin, M. Zhang, X. Jiang, X.-T. Shen, R.-R. Jin, J. Cai, X.-Q. Tian, H.L. Wong, Evaluation of a Novel Thermosensitive Heparin-Poloxamer Hydrogel for Improving Vascular Anastomosis Quality and Safety in a Rabbit Model, PloS one, 8 (2013) e73178.
[24] D.S. Shaker, M.K. Ghorab, A. Klingner, M.S. Teiama, In-situ Injectable Thermosensitive Gel Based on Poloxamer as a New Carrier for Tamoxifen Citrate, International Journal of Pharmacy and Pharmaceutical Sciences, 5 (2013) 429-437.
[25] B. Jeong, S.W. Kim, Y.H. Bae, Thermosensitive sol–gel reversible hydrogels, Advanced Drug Delivery Reviews, 64 (2012) 154-162.
[26] S. Fusco, Perspectives on: PEO-PPO-PEO Triblock Copolymers and their Biomedical Applications, Journal of Bioactive and Compatible Polymers, 21 (2006) 149-164.
[27] E. Ruel-Gariépy, J.-C. Leroux, In situ-forming hydrogels—review of temperature-sensitive systems, European Journal of Pharmaceutics and Biopharmaceutics, 58 (2004) 409-426.
[28] G. Bonacucina, M. Cespi, G. Mencarelli, G. Giorgioni, G.F. Palmieri, Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems, Polymers, 3 (2011) 779.
[29] B. Jeong, Y.H. Bae, D.S. Lee, S.W. Kim, Biodegradable block copolymers as injectable drug-delivery systems, Nature, 388 (1997) 860-862.
[30] E. Volkmer, U. Leicht, M. Moritz, C. Schwarz, H. Wiese, S. Milz, P. Matthias, W. Schloegl, W. Friess, M. Goettlinger, P. Augat, M. Schieker, Poloxamer-based hydrogels hardening at body core temperature as carriers for cell based therapies: in vitro and in vivo analysis, Journal of materials science. Materials in medicine, 24 (2013) 2223-2234.
[31] L. Mayol, F. Quaglia, A. Borzacchiello, L. Ambrosio, M.I. La Rotonda, A novel poloxamers/hyaluronic acid in situ forming hydrogel for drug delivery: rheological, mucoadhesive and in vitro release properties, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 70 (2008) 199-206.
[32] L. Mayol, M. Biondi, F. Quaglia, S. Fusco, A. Borzacchiello, L. Ambrosio, M.I. La Rotonda, Injectable Thermally Responsive Mucoadhesive Gel for Sustained Protein Delivery, Biomacromolecules, 12 (2010) 28-33.
[33] A. Borzacchiello, L. Ambrosio, Structure-Property Relationships in Hydrogels, Hydrogels, Springer Milan2009, pp. 9-20.
[34] A. Borzacchiello, L. Ambrosio, Network formation of low molecular weight hyaluronic acid derivatives, Journal of Biomaterials Science, Polymer Edition, 12 (2012) 307-316.
[35] S.I.H. Abdi, J.Y. Choi, J.S. Lee, H.J. Lim, C. Lee, J. Kim, H.Y. Chung, J.O. Lim, In Vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application, Tissue Engineering and Regenerative Medicine, 9 (2012) 1-9.
[36] P. Balakrishnan, E.-K. Park, C.-K. Song, H.-J. Ko, T.-W. Hahn, K.-W. Song, H.-J. Cho, Carbopol-Incorporated Thermoreversible Gel for Intranasal Drug Delivery, Molecules, 20 (2015) 4124.
[37] R. Bhardwaj, J. Blanchard, Controlled-release delivery system for the α-MSH analog Melanotan-I using poloxamer 407, Journal of pharmaceutical sciences, 85 (1996) 915-919.
[38] J.S. Choi, H.S. Yoo, Chitosan/pluronic hydrogel containing bFGF/heparin for encapsulation of human dermal fibroblasts, Journal of biomaterials science. Polymer edition, 24 (2013) 210-223.
[39] M.-C. Yang, W.-F. Lai, Evaluation of F127chitosan hydrogel as a scaffold for bone repair, Nanotechnology 2013: Bio Sensors, Instruments, Medical, Environment and Energy, 2013, pp. 187 - 190.
[40] T. Gratieri, G.M. Gelfuso, E.M. Rocha, V.H. Sarmento, O. de Freitas, R.F. Lopez, A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 75 (2010) 186-193.
[41] D. Cohn, A. Sosnik, S. Garty, Smart hydrogels for in situ generated implants, Biomacromolecules, 6 (2005) 1168-1175.
[42] R. Barreiro-Iglesias, L. Bromberg, M. Temchenko, T.A. Hatton, C. Alvarez-Lorenzo, A. Concheiro, Pluronic-g-poly(acrylic acid) copolymers as novel excipients for site specific, sustained release tablets, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 26 (2005) 374-385.
[43] D. Cohn, G. Lando, A. Sosnik, S. Garty, A. Levi, PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers, Biomaterials, 27 (2006) 1718-1727.
[44] K.Y. Cho, T.W. Chung, B.C. Kim, M.K. Kim, J.H. Lee, W.R. Wee, C.S. Cho, Release of ciprofloxacin from poloxamer-graft-hyaluronic acid hydrogels in vitro, International journal of pharmaceutics, 260 (2003) 83-91.
[45] J.W. Kwon, Y.K. Han, W.J. Lee, C.S. Cho, S.J. Paik, D.I. Cho, J.H. Lee, W.R. Wee, Biocompatibility of poloxamer hydrogel as an injectable intraocular lens: A pilot study, Journal of Cataract & Refractive Surgery, 31 (2005) 607-613.
[46] Y.-L. Hu, W. Qi, F. Han, J.-Z. Shao, J.-Q. Gao, Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model, International Journal of Nanomedicine, 6 (2011) 3351-3359.
[47] E.S. Desai, M.Y. Tang, A.E. Ross, R.A. Gemeinhart, Critical Factors Affecting Cell Encapsulation in Superporous Hydrogels, Biomedical Materials (Bristol, England), 7 (2012) 024108-024108.
[48] J. Varshosaz, M. Tabbakhian, Z. Salmani, Designing of a Thermosensitive Chitosan/Poloxamer In Situ Gel for Ocular Delivery of Ciprofloxacin.pdf, Open Drug Delivery, 2 (2008) 61-70.
[49] E. Khodaverdi, M. Tafaghodi, F. Ganji, K. Abnoos, H. Naghizadeh, In Vitro Insulin Release from Thermosensitive Chitosan Hydrogel, AAPS PharmSciTech, 13 (2012) 460-466.
[50] G. Kim, N. Kim, D. Kim, J. Kwon, B.-H. Min, An Electrostatically Crosslinked Chitosan Hydrogel as a Drug Carrier, Molecules, 17 (2012) 13704.
[51] C. Li, S. Ren, Y. Dai, F. Tian, X. Wang, S. Zhou, S. Deng, Q. Liu, J. Zhao, X. Chen, Efficacy, Pharmacokinetics, and Biodistribution of Thermosensitive Chitosan/β-Glycerophosphate Hydrogel Loaded with Docetaxel, AAPS PharmSciTech, 15 (2014) 417-424.
[52] S.-M. Lee, K.-H. Liu, Y.-Y. Liu, Y.-P. Chang, C.-C. Lin, Y.-S. Chen, Chitosonic® Acid as a Novel Cosmetic Ingredient: Evaluation of its Antimicrobial, Antioxidant and Hydration Activities, Materials, 6 (2013) 1391-1402.
[53] Y. Chien, Y.-W. Liao, D.-M. Liu, H.-L. Lin, S.-J. Chen, H.-L. Chen, C.-H. Peng, C.-M. Liang, C.-Y. Mou, S.-H. Chiou, Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel, Biomaterials, 33 (2012) 8003-8016.
[54] C.D. Isabelle Migneault, Michel J. Bertrand, Karen C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, BioTechniques, 37 (2004) 790–802.
[55] Lie, C. Gao, Z. Mao, J. Shen, X. Hu, C. Han, Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen–chitosan porous scaffolds used as dermal equivalent, Journal of Biomaterials Science, Polymer Edition, 14 (2003) 861-874.
[56] T.J. Trivedi, K.S. Rao, A. Kumar, Facile preparation of agarose-chitosan hybrid materials and nanocomposite ionogels using an ionic liquid via dissolution, regeneration and sol-gel transition, Green Chemistry, 16 (2014) 320-330.
[57] C. Ju, J. Sun, P. Zi, X. Jin, C. Zhang, Thermosensitive micelles-hydrogel hybrid system based on poloxamer 407 for localized delivery of paclitaxel, Journal of pharmaceutical sciences, 102 (2013) 2707-2717.
[58] L. Wang, J.P. Stegemann, Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration, Acta biomaterialia, 7 (2011) 2410-2417.
[59] H.K. Heris, N. Latifi, H. Vali, N. Li, L. Mongeau, Investigation of Chitosan-glycol/glyoxal as an Injectable Biomaterial for Vocal Fold Tissue Engineering, Procedia Engineering, 110 (2015) 143-150.
[60] M. Dessi, A. Borzacchiello, T.H. Mohamed, W.I. Abdel-Fattah, L. Ambrosio, Novel biomimetic thermosensitive beta-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering, Journal of biomedical materials research. Part A, 101 (2013) 2984-2993.
[61] S. Kim, Y. Kang, C.A. Krueger, M. Sen, J.B. Holcomb, D. Chen, J.C. Wenke, Y. Yang, Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation, Acta biomaterialia, 8 (2012) 1768-1777.
[62] L. Wang, R.R. Rao, J.P. Stegemann, Delivery of Mesenchymal Stem Cells in Chitosan/Collagen Microbeads for Orthopedic Tissue Repair, Cells Tissues Organs, 197 (2013) 333-343.
[63] C.D. Hoemann, A. Chenite, J. Sun, M. Hurtig, A. Serreqi, Z. Lu, E. Rossomacha, M.D. Buschmann, Cytocompatible gel formation of chitosan-glycerol phosphate solutions supplemented with hydroxyl ethyl cellulose is due to the presence of glyoxal, Journal of Biomedical Materials Research Part A, 83A (2007) 521-529.
[64] G. Dumortier, J.L. Grossiord, M. Zuber, G. Couarraze, J.C. Chaumeil, Rheological study of a thermoreversible morphine gel, Drug Development and Industrial Pharmacy, 17 (1991) 1255-1265.
[65] L. Gao, H. Gan, Z. Meng, R. Gu, Z. Wu, L. Zhang, X. Zhu, W. Sun, J. Li, Y. Zheng, G. Dou, Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability, Colloids and Surfaces B: Biointerfaces, 117 (2014) 398-405.
[66] T. Hatakeyama, K. Nakamura, H. Hatakeyama, Determination of bound water content in polymers by DTA, DSC and TG, Thermochimica Acta, 123 (1988) 153-161.
[67] R. Yudianti, M. Karina, M. Sakamoto, J.-i. Azuma, DSC analysis on water state of salvia hydrogels, Macromolecular Research, 17 (2009) 1015-1020.
[68] A.H.H. Talasaz, A.A. Ghahremankhani, S.H. Moghadam, M.R. Malekshahi, F. Atyabi, R. Dinarvand, In situ gel forming systems of poloxamer 407 and hydroxypropyl cellulose or hydroxypropyl methyl cellulose mixtures for controlled delivery of vancomycin, Journal of Applied Polymer Science, 109 (2008) 2369-2374.
[69] H.-J. Cho, P. Balakrishnan, E.-K. Park, K.-W. Song, S.-S. Hong, T.-Y. Jang, K.-S. Kim, S.-J. Chung, C.-K. Shim, D.-D. Kim, Poloxamer/cyclodextrin/chitosan-based thermoreversible gel for intranasal delivery of fexofenadine hydrochloride, Journal of pharmaceutical sciences, 100 (2011) 681-691.
[70] U.C. GALGATTE, P.D. CHAUDHARI, Preformulation study of poloxamer 407 gels: Effect of additives, International Journal of Pharmacy and Pharmaceutical Sciences, 6 (2014) 130-133.
[71] C.S. Yong, J.S. Choi, Q.-Z. Quan, J.-D. Rhee, C.-K. Kim, S.-J. Lim, K.-M. Kim, P.-S. Oh, H.-G. Choi, Effect of sodium chloride on the gelation temperature, gel strength and bioadhesive force of poloxamer gels containing diclofenac sodium, International journal of pharmaceutics, 226 (2001) 195-205.
[72] G.G. Pereira, F.A. Dimer, S.S. Guterres, C.P. Kechinski, J.E. Granada, N.S.M. Cardozo, Formulation and characterization of poloxamer 407®: thermoreversible gel containing polymeric microparticles and hyaluronic acid, Química Nova, 36 (2013) 1121-1125.
[73] Z. Jin, Chitosan-Based Gels for the Drug Delivery System, Chitosan-Based Hydrogels, CRC Press2011, pp. 263-314.
[74] E. Morlion, J.-P.p. Remon, Development of a thermosensitive and mucoadhesive vehicle, based on poloxamer and chitosan, for vaginal administration of drugs, 2009., 2009.
[75] G.A.F. Roberts, K.E. Taylor, Chitosan gels, 3. The formation of gels by reaction of chitosan with glutaraldehyde, Die Makromolekulare Chemie, 190 (1989) 951-960.
[76] Y. Guan, J. Bian, F. Peng, X.-M. Zhang, R.-C. Sun, High strength of hemicelluloses based hydrogels by freeze/thaw technique, Carbohydrate Polymers, 101 (2014) 272-280.
[77] L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications, European Journal of Pharmaceutics and Biopharmaceutics, 68 (2008) 34-45.
[78] K. Nakamura, T. Hatakeyama, H. Hatakeyama, Studies on Bound Water of Cellulose by Differential Scanning Calorimetry, Textile Research Journal, 51 (1981) 607-613.
[79] C.A. Schoener, H.N. Hutson, N.A. Peppas, pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics, Journal of biomedical materials research. Part A, 101 (2013) 2229-2236.
[80] W. Hassan, Y. Dong, W. Wang, Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid, Stem Cell Research & Therapy, 4 (2013) 32-32.
[81] W.G. Koh, A. Revzin, M.V. Pishko, Poly(ethylene glycol) hydrogel microstructures encapsulating living cells, Langmuir : the ACS journal of surfaces and colloids, 18 (2002) 2459-2462.
[82] G.D. Nicodemus, S.J. Bryant, Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications, Tissue engineering. Part B, Reviews, 14 (2008) 149-165.
[83] S.R. Caliari, J.A. Burdick, A practical guide to hydrogels for cell culture, Nat Meth, 13 (2016) 405-414.
[84] A.D. Doyle, N. Carvajal, A. Jin, K. Matsumoto, K.M. Yamada, Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions, Nature Communications, 6 (2015) 8720.
[85] N.V. Gupta, H.G. Shivakumar, Investigation of Swelling Behavior and Mechanical Properties of a pH-Sensitive Superporous Hydrogel Composite, Iranian Journal of Pharmaceutical Research : IJPR, 11 (2012) 481-493.
[86] Y. Yin, Y. Yang, H. Xu, Swelling behavior of hydrogels for colon-site drug delivery, Journal of Applied Polymer Science, 83 (2002) 2835-2842.
[87] B.A. Gupta, Sadiya; Gautam, Deepti; Saxena, Shalini; Joy, Jincy; Mishra, Abhishek; Ikram, Saiqa, Preparation and Physiochemical Characteristics of Crosslinked Chitosan-Polyethylene glycol Hydrogels, Trends in Carbohydrate Research, 4 (2012) 34-41.
[88] L.-S. Yap, M.-C. Yang, Evaluation of hydrogel composing of Pluronic F127 and carboxymethyl hexanoyl chitosan as injectable scaffold for tissue engineering applications, Colloids and Surfaces B: Biointerfaces, 146 (2016) 204-211.
[89] K.S. Lim, B.S. Schon, N.V. Mekhileri, G.C.J. Brown, C.M. Chia, S. Prabakar, G.J. Hooper, T.B.F. Woodfield, New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks, ACS Biomaterials Science & Engineering, 2 (2016) 1752-1762.
[90] K.M. Park, S.Y. Lee, Y.K. Joung, J.S. Na, M.C. Lee, K.D. Park, Thermosensitive chitosan–Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration, Acta biomaterialia, 5 (2009) 1956-1965.

QR CODE