簡易檢索 / 詳目顯示

研究生: 黃昌國
Chang-Kuo Huang
論文名稱: 細胞外間質固定化Biomax 非織物對細胞相容性之探討
Cytocompatibility of ECM-Immobilized Biomax Nonwoven
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊禎明
Jen-Ming Yang
李振綱
Cheng-Kang Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 組織工程生物支架細胞相容性細胞間質Biomax 非織物
外文關鍵詞: Biomax nonwoven fabrics, extracellular matrices, cytocompatibility, scaffold, tissue engineering
相關次數: 點閱:358下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以共價鍵結方式將膠原蛋白(collagen, CL)、明膠(gelatin, GL)或多醣類如幾丁聚醣(chitosan, CS)、透明質酸(hyaluronic acid, HA)、硫酸軟骨素(chondroitin-6-sulfate, ChS)等細胞間質固定於多孔性、生物可分解之Biomax非織物,使其成為親水性與細胞相容性之3D生物支架。經接枝後之非織物以ESCA元素分析、拉伸試驗機(tensile tester)和掃瞄式電子顯微鏡(SEM)來確定改質後之材料特性,並測定孔隙度、抗菌性,以及評估其非織物膨潤度和水份擴散及接觸角等非織物之親水性質,同時量測活化部分凝血時間(APTT)、凝血原時間(PT)、血小板凝集程度來評估凝血性質。然後將改質後的膜材作纖維母細胞之體外培養,比較其細胞之增生細胞相容性。本研究結果顯示Biomax高孔隙度非織物經細胞間質固定化後,接枝明膠之織物具有較高之抗張強度,較低之接觸角,較低的血小板貼附量,較長的凝血時間,但無抑菌性。接枝chitosan之織物則有最佳之抑菌性。且接枝CL、GL、CS、HA、ChS之織物對fibroblast細胞增生有助益。


    Mechanical and cellular compatible scaffolds for tissue engineering were prepared using the three-dimensional, macroporous Biomax nonwoven fabrics immobilized with extracellular matrices (ECM), such as collagen (CL), gelatin (GL), chitosan (CS), hyaluronic acid (HA), and chondroitin-6-sulfate (ChS). The ECM-immobilizing Biomax nonwoven was characterized by ESCA, tensile tester, and scanning electron microscopy (SEM). The swelling properties were evaluated by water diffusion and contact angle measurement. The hemostatic behavior was observed by the adhesion and aggregation level of platelet. The cellular compatibility was evaluated using 3T3 fibroblasts in vitro culture. The results show that GL-immobilizing Biomax nonwoven fabrics exhibited higher tensile strength, lower contact angle, less platelet adhesion, longer coagulation time, but no bacterial inhibition. CS-immobilizing nonwoven exhibited the highest bacterial inhibition. Nonwoven immobilized with ECM showed improvement in the proliferation of fibroblast.

    目錄 摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1-1研究背景 1 1-2研究目的 3 第二章 文獻回顧與理論基礎 4 2-1生物可分解型聚酯Biomax 簡介 4 2-2膠原蛋白及明膠簡介 5 2-3硫酸軟骨素簡介 6 2-4透明質酸簡介 7 2-5幾丁質、幾丁聚醣簡介 8 2-6組織工程概述 9 2-7血液凝固學基礎概要 10 2-7-1凝血作用機制 11 2-7-2血液的凝固機制 13 2-7-3臨床上相關血液凝固時間的測量及其意涵 13 2-8血小板之簡介 15 2-8-1血小板及凝血機制 16 2-8-2血小板之凝血作用 16 2-9金黃色葡萄球菌之簡介 16 2-10纖維母細胞之特性 17 第三章 實驗設備、藥品及實驗方法 18 3-1實驗設備 18 3-2實驗藥品 19 第四章 實驗步驟 20 4-1實驗流程圖 20 4-2 IPA處理 21 4-3 Biomax非織物接枝細胞外間質之前處理 21 4-4各試藥之配製濃度 21 4-5細胞外間質之接枝固定化示意簡圖 22 4-6 ECM接枝之化學反應式 23 4-7非織物之孔洞性質觀察(SEM) 23 4-8非織物機械性質之拉伸試驗 23 4-9孔隙度測定 24 4-10 ESCA元素分析 25 4-11接觸角量測 25 4-12膨潤度量測 25 4-13水份擴散速率 26 4-14凝血實驗 26 4-14-1活化部分凝血活時間(APTT) 26 4-14-2凝血原時間(PT) 27 4-15血小板附著評估 27 4-16抗菌實驗 28 4-17細胞相容性 30 4-17-1 Biomax非織物之細胞培養技術 30 4-17-2細胞濃度之計數方式 30 4-17-3細胞增生實驗 31 第五章 結果與討論 32 5-1拉伸試驗 32 5-2孔隙度 33 5-3膨潤度、水份擴散以及接觸角等親水特性探討 34 5-4 ESCA元素分析 37 5-5血小板吸附實驗 38 5-6凝血時間實驗 40 5-7抗菌試驗 42 5-8細胞增生探討 44 第六章 結論 47 參考文獻 48 附錄 53 圖目錄 圖2-1明膠蛋白之分子結構式 6 圖2-2 chondroitin-6-sulfate的化學結構式 7 圖2-3透明質酸的化學結構式 8 圖2-4幾丁聚醣的化學結構式 9 圖2-5血液的凝固機制示意圖 [42] 13 圖2-6凝血原時間測定原理(PT) 14 圖2-7活化部分凝血活時間(APTT)測定原理 15 圖4-1細胞外間質之接枝固定化示意簡圖 22 圖4-2拉伸強力試片樣品 24 圖4-3 Simplified block diagram of multivolume pycnometer 1305 25 圖4-4 APTT 測試流程圖 27 圖4-5 PT凝血原時間 27 圖4-6 JIS L 1902-1998法流程圖 29 圖5-1拉伸試驗示意圖 33 圖5-2各試樣組孔隙度示意圖 34 圖5-3對水之接觸角度 35 圖5-4膨潤度示意圖 36 圖5-5擴散面積示意圖 36 圖5-6 ESCA元素分析 37 圖5-7血小板吸附示意圖 39 圖5-8血小板吸附2小時之SEM照片 40 圖5-9 APTT時間 41 圖5-10 PT時間 42 圖5-11細胞增生五天後之SEM照片: 46 表目錄 表4-1 各試藥之配製濃度表 21 表4-2 拉伸強力試片之細部尺寸 24 表5-1以白棉布為對照組 43 表5-2以Blank為對照組 44

    1. Bell﹐E.﹐Ivarsson﹐and C. Merrill﹐Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA﹐76(3): 1274-8. 1979.
    2. Chvapil, M. Collagen sponge: theory and practice of medical applications. J. Biomed. Mater. Res., 11, 721-741, 1977.
    3. Olde Damink LH, Dijkstra PJ, Van Luyn MJ, Van Wachem PB, Nieuwenhuis P, Feijen J. Influence of ethylene oxide gas treatment on the in vitro degradation behavior of dermal sheep collagen. J. Biomed. Mater. Res., 29, 149-155, 1995.
    4. Kuo SM, Tsai SW, Huang LH, Wang YJ. Plasma-modified nylon meshes as supports for cell culture. Art. Cells Blood Subs. Immob. Biotech., 25(6), 551-562, 1997.
    5. Spira M, Liu B, Xu Z, Harrell R, Chahadeh H. Human amnion collagen for soft tissue augmentation- biochemical characterizations and animal observations, J. Biomed. Mater.Res., 28, 91-96, 1994.
    6. Rovee DT, Kurowsky CA, Labun J. Local wound environment and epidermal healing. Arch Derm, 106, 330-334, 1972.
    7. Davis, J.W.L. Synthetic materials for covering burn wounds: Progress towards perfection. Part I. short term dressing materials. Burns,10, 94-103, 1984.
    8. Queen D, Evans JH, Gaylor JD, Courtney JM, Reid WH. Burn wound dressing a review. Burns, 13, 218-228, 1987.
    9. http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html.
    10. Madihally SV, Matthew, HWT. Porous chitosan scaffolds for tissue engineering. Biomaterials;20:1133-42. 1999.
    11. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials;21:2529-43. 2000.
    12. Li Y, Ma T, Yang ST, Kniss DA. Thermal compression and characterization of three-dimensional nonwoven PET matrics as tissue engineering scaffolds. Biomaterials;22:609-18. 2001.
    13. Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res;60:86-93. 2002.
    14. Li WJ, Laurencin CA, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrious structure: a novel scaffold for tissue engineering. J Biomed Mater Res; 60:613-21. 2002.
    15. Liao CJ, Chen CF, Chen JH, Chaing SF, Lin YJ, Chang KY. Fabrication of porous biodegradable polymer scaffolds using a sovent merging/particulate leaching method. J Biomed Mater Res; 59:676-81. 2002.
    16. Liu LS, Thompson AY, Heidaran MA, Poser JW. An osteoconductive collagen/haluronate matrix for bone regeneration. Biomaterials; 20:1097-1108. 1999.
    17. Shanmugasundaram N, Ravichandran P, Reddy NP, Ramamurty N, Pal S, Rao PK. Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials; 22:1943-51. 2001.
    18. Piper JS, Oosterhof A, Dijkstra PJ, Veerkamp JH, van Kuppevelt TH. Preparation and characterization of porous crosslinked collagenous matrics containing bioavailable chondroitin sulphate. Biomaterials;20:847-58. 1999.
    19. 杜邦台灣http://www.dupont.com.tw/5-06.htm#3
    20. Hay, E.D. ,Cell Biology of extracellular matrix. Plenum press. 1991.
    21. W. Friess, “Review article: collagen-biomaterial for drug delivery” European Journal of Pharmaceutics and Biopharmaceutics. 45:113-136,1998.
    22. 科學發展,第380期,2004年8月
    23. Sharma, J.; Aswal, V. K.; Goyal, P. S.; Bohidar, H. B.; Small-Angle Neutron Scattering Studies of Chemically Cross-Linked Gelatin Solutions and Gels. Macromolecules,34,5215.2001.
    24. Akin, H.;Hasirci, N. Preparation and characterization of crosslinked gelatin microspheres. J. Appl. Polym. Sci., 58,95. 1995
    25. Watanable, H., Yamada, Y., Kimata, K. Role of aggrecan, a large chondroitin sulfate proteoglycan, in cartilage structure and function. Journal of Biochemistry; 124:687-693.1998.
    26. Miyauchi S, Morita M, Kuramoto K, Horie K. Hyaluronan and chondroitin sulfate in rabbit tears. Curr Eye Res; 15:131-135.1996.
    27. Murray, M.M., Martin, S.D. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials;22:2293-2402. 2001.
    28. Murray MM, Martin SD, Spector M. Migration of cells from human anterior cruciate ligament explans into collagen-glycosaminglycan scaffolds.J Orthop Res;18:557-564. 2000.
    29. Lamme EN, de Vries HJ, van Veen H, Gabbiani G, Westerhof W, Middelkoop E. Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem;221:1311-1322. 1996.
    30. Laurent, T.C. and J.R. Fraser,Hyaluronan. Faseb J, 6﹙7﹚:2397-404. 1992.
    31. Singla,S.K. , Nomenclature of hyaluronic acid. Biochem J,. 242﹙2﹚: 623. 1987.
    32. Bulpitt P, Aeschlimann D. New strategy for chemical modification of hyaluronic acid︰preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels, J Biomed Mater Res 47,152-169.1999.
    33. Oerther S, Gall HL, Payan E, Lapicque F, Presle N, Hubert P, Dexheimer J, Netter P, Lapicque F. Hyaluronate-alginate gel as a novel biomaterial:mechanical properties and formation mechanism, Biotechnol Bioeng 63, 206-215.1999.
    34. Choi YS, Hong SR, Lee YM, Song KW, Park MH. Studies on gelatin-containing artifical skin: II. Preparation and characterization of cross-linked gelatin-hyaluronate sponge, J Biomed Mater Res﹙Appl Biomater﹚48, 631-639.1999.
    35. Olsen R, Schwartzmiller D. Biomedical application of chitin and its derivatives. in Chitin and chitosan , Ed by Skjak BG, Anthonsen T, Sandford P, London and New York:Elsevier Applied Science, pp. 813-828.1989.
    36. Chandy T, Sarma CP. Chitosan as a biomaterial ,Biomater Artif Cells Artif Organs 18, 1-14.1990.
    37. Osborne CS, Reid WH, Grant MH. Investigation into the biological stability of collagen/chondroitin-6-sulfate gels and their contraction by fibroblasts and kerationcytes: the effect of crosslinking agents and diamines. Biomaterials; 20:283-290. 1999.
    38. Chatelet C, Damour O, Domard A. Inflence of the degree of acetylation on some biological properties of chitosan films, Biomaterials 22, 261-268 .2001.
    39. Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro, Biomaterials, 18, 947-951.1997.
    40. Malette WG, Jr Quigley HJ, Okawa Y, Adickes ED. Chitosan effect in vascular surgery, tissue culture and tissue regeneration. In Chitin in nature and technology, Ed by Muzzarelli R, Jeuniaux C, Gooday GW. New York:Plenum Press, p. 435-442. 1986.
    41. 李婷婷,“聚苯胺修飾電極對肝素之偵測”,中山大學化學研究所碩士論文,19-20,1999。
    42. 何敏夫,凝固作用,血液學,合計出版社,台北, 509-528,2001。
    43. 吳翠君,“壓電石英晶體微天平於抗固劑血液凝固時間之研究”,成功大學醫學工程研究所碩士論文,9-14,1999。
    44. E. Kulik, Y. Ikada, In vitro platelet adhesion to nonionic and ionic hydrogels with different water contents. ,J Biomed. Mater. Res, 30, 295.1996.
    45. A. Kishida, S. Kato, K. Ohmura, K. Sugimura and M. Akashi, Evaluation of biological responses to polymeric biomaterials by RT-PCR analysis. , Biomaterials, 17 1301.1996.
    46. http://content.edu.tw/vocation/home_economics/tc_tc/u1/ch7/temp/h01_5.htm
    47. 劉技謀,人工真皮之製備與透明質酸添加效應之研究,國立成功大學生物科技研究所碩士學位論文,2001。
    48. Chen G, Ito Y, Imanishi Y, Magnami A, Lamponi S, Barbucci R. Photoimmobilization of sulfated hyaluronic acid for antithrombogenicity, Bioconjugate Chem 8, 730-734. 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE