簡易檢索 / 詳目顯示

研究生: 薛怡雯
Yi-wen Hsueh
論文名稱: 含茶樹精油的蠶絲蛋白薄膜開發與其在皮膚痤瘡上之治療評估
Developing a Tea Tree Oil-Containing Silk Fibroin Protein Membranes and Evaluating their effect on the Skin Acne Infection
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 許昕
Hsin Hsiu
謝明發
Ming-Fa Hsieh
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 102
中文關鍵詞: 蠶絲蛋白茶樹精油痤瘡
外文關鍵詞: Silk Fibrin Protein, Tea Tree Oil, Ance
相關次數: 點閱:280下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於目前市售的痤瘡敷料,皆無抗菌及抗發炎之成分添加,對於發炎中的痤瘡,無法有效的抑制其發炎程度,以及細菌之增生,為改善其缺點,因此,本研究利用澆鑄的方式將蠶絲蛋白摻混聚乙烯醇鑄成複合薄膜,做為薄膜之基質(NP-SFPM),利用氯化鈉製造具有孔洞之薄膜(P-SFPM),增加其透氣性,並添加具有抗菌及抗發炎功效之茶樹精油,評估其對於治療皮膚痤瘡之功效,經細胞實驗發現,蠶絲蛋白薄膜無細胞毒性,隨著茶樹精油含量的添加,其細胞存活率越低,當茶樹精油添加25微升至NP-SFPM以及P-SFPM時,其細胞存活率分別降低至,67.5 ± 4.0%及49.3±8.2%,選擇其細胞存活率較高之組別,做後續抗發炎以及抑菌之研究,經實驗發現蠶絲蛋白薄膜具有38.6%至44.4%之抗發炎功效,僅需添加微量的(3.125微升、6.25 微升、12.5 微升)茶樹精油,即可抑制LPS誘導巨噬細胞(Raw 264.7)發炎產生NO的濃度,將其應用在抑制痤瘡桿菌(Propionibacterium acnes, P. acnes)增生之實驗,發現蠶絲蛋白薄膜具有78%以上之抑菌功效,且隨著茶樹精油添加至12.5 微升,其抑菌率更可達到98%以上,經由小鼠動物模式驗證,發現從誘發感染後治療一天、三天及九天之組織含菌量變化,實驗組隨者天數的增加,各組之抑菌率更上升28%以上,由此證實本研究所開發出的薄膜,對於皮膚痤瘡的治療有確實之功效。


In this study, we used the way of casting to mix Silk and PVA together to generate a composite membrane, i.e., Non-porous-Silk Fibroin Protein Membranes (NP-SFPM) and subsequently used NaCl to creat pores in the NP-SFPM (Porous-Silk Fibroin Protein Membranes, P-SFPM),for increasing its permeability. We also added Tea Tree Oil (TTO) to abovementioned membranes and then assessed its efficacy on the treatment of skin acne infection.In this study, we found that silk fibroin protein membranes (SFPM) doesn’t have significant cytotoxicity under appropriate amount of TTO addition. When the content of TTO added to NP-SFPM and P-SFPM up to 25 μL , cell viability decreased to, 67.5 ± 4.0% and 49.3 ± 8.2%. Thus, we choose 3.125 μL, 6.25 μL, and 12.5 μL for the following anti-inflammatory and anti-bacterial studies. The experiments prove that the SFPM exhibits a slight anti-inflammatory effect. In addition, under a small amount of extra TTO addition, our membranes show remarkable ability on inhibiting the NO formation in LPS-induced giant macrophages (Raw 264.7). In inhibiting the proliferation of Propionibacterium acnes (P. acnes) experiments, we found that SFPM has mild anti-bacterial effect (78% of bacteriosis), and in the case of 12.5 μL TTO addition, the inhibition ratio can reach approximately 98-99%. In animal model evaluation, we found that increasing the numbers of treatment day, the inhibition rates of P. acnes in the experimental group are significantly increased. Conclusively, we successfully develop a SFP-based membrane, which is potentially useful on the treatment of skin acne problem.

摘要 Abstract 致謝 目錄 圖目錄 表目錄 縮寫表 第一章、緒論 第二章 文獻回顧 2-1皮膚組織構造簡介 2-1-1 皮膚之功能及組成 2-1-2 皮膚之線體 – 皮脂腺 ( Sebaceous glan ) 2-2痤瘡之病灶 2-2-1 痤瘡之形成 2-2-2 痤瘡桿菌 2-2-3痤瘡之常用治療方式 2-3 澳洲茶樹精油 2-4 生醫材料 2-4-1生醫材料簡介 2-4-2 合成高分子聚合物-聚乙烯醇Polyvinyl alcohol (PVA)之應用 2-4-3天然高分子聚合物-蠶絲蛋白 (Silk Fibroin Protein, SFP)之應用 2-5研究動機、目的與方法 第三章 材料與方法 3-1 實驗材料 3-1-1 薄膜製備材料 3-1-2 細胞毒性測試材料 3-1-3 抗發炎試驗材料 3-1-4 抑菌實驗材料 3-1-5 活體動物實驗材料 3-2 實驗儀器 3-3 蠶絲脫膠及純化 3-3-1 蠶繭脫膠 3-3-2 純化蠶絲蛋白 3-4 薄膜製備 3-4-1無孔洞蠶絲蛋白薄膜(Non-porous silk fibroin protein membrane (NP-SFPM)) 3-4-2多孔性蠶絲蛋白薄膜(Porous silk fibroin protein membrane (P-SFPM)) 3-5表面型態鑑定與化學結構分析 3-5-1 掃描電子顯微鏡Scanning Electron Microscope(SEM) 3-5-2 FTIR之化學結構分析 3-6 細胞毒性測試 3-7 LPS誘導RAW 264.7之抗發炎試驗 3-8抑菌實驗 3-8-1 菌株活化與繼代 3-8-2 抑菌實驗 3-9藥物釋放曲線 3-10 活體動物模式驗證 第四章、結果 4-1 脫膠之蠶絲蛋白表面型態鑑定與化學結構分析 4-1-1 表面型態鑑定-Scanning Electron Microscope 4-1-2 FTIR化學結構分析鑑定 4-2薄膜表面形態與P-SFPM孔洞大小分析 4-3 3T3細胞毒性試驗 4-4 LPS誘導Raw 264.7之抗發炎試驗 4-5抑制痤瘡桿菌增生之實驗 4-6 TTO藥物釋放曲線 4-7活體動物模式驗證 第五章、討論 5-1討論 參考文獻 References 附錄

1. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. Journal of controlled release : official journal of the Controlled Release Society. 2011;150(2):128-41.
2. Wang Y, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissue engineering with silk biomaterials. Biomaterials. 2006;27(36):6064-82.
3. 徐其全. 靜電紡絲蠶絲蛋白/二氧化鈦奈米纖維薄膜作為生醫敷料之探討. 國立台灣科技大學高分子工程研究所 碩士論文. 2010.
4. 魏宗平. PLGA微球包覆Rapamycin 與蠶絲蛋白/明膠形成複合薄膜之藥物釋放探討. 國立台北科技大學化學工程研究所 碩士論文 2012.
5. Lu Z, Meng M, Jiang Y, Xie J. UV-assisted in situ synthesis of silver nanoparticles on silk fibers for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;447:1-7.
6. Gogoi D, Choudhury AJ, Chutia J, Pal AR, Khan M, Choudhury M, et al. Development of advanced antimicrobial and sterilized plasma polypropylene grafted muga (antheraea assama) silk as suture biomaterial. Biopolymers. 2014;101(4):355-65.
7. Dai L, Li J, Yamada E. Effect of glycerin on structure transition of PVA/SF blends. Journal of Applied Polymer Science. 2002;86(9):2342-7.
8. Yoon H, Kim EY, Kim H, Park CH, Joo C-K, Khang G. Fabrication of transparent silk fibroin film for the regeneration of corneal endothelial cells; preliminary study. Macromolecular Research. 2013;22(3):297-303.
9. Zhang Y-Q. Applications of natural silk protein sericin in biomaterials. Biotechnology Advances. 2002;(20):91-100.
10. 蘇三稜. 皮膚病與青春痘. 臺灣: 元氣齋出版社有限公司; 2008.
11. JOHN J. RUSSELL. Topical Therapy for Acne. Am Fam Physician. 2000;15;61(2):357-65.
12. Krautheim A, Gollnick HP. Acne: topical treatment. Clinics in dermatology. 2004;22(5):398-407.
13. 鄭景峯. 六十種中藥材熱水萃出物對痤瘡病原菌之抑菌性. 大同大學生物工程研究所 碩士論文. 2005.
14. 張聰民, 周玉青, 張汀沂, 黃蕙君. 小檗鹼影響痤瘡桿菌生長之研究. 弘光學報50期. 2006.
15. McKinley•O'Loughlin. HUMAN ANATOMY. America: McGraw-Hill Companies; 2008.
16. 游祥明. 解剖學 = Anatomy. 台北市: 華杏出版; 2007.
17. Carola R, Harley JP, Noback CR. Human anatomy. New York: McGraw-Hill; 1992.
18. Monteiro-Riviere NA. Dermal Absorption Models in Toxicology and Pharmacology: Taylor & Francis Group, LLC; 2005.
19. 陳立偉. 茶樹精油應用於痤瘡治療之功效與安全評估. 台北醫學大學生藥學研究所 碩士論文. 2008.
20. 林松洲. 大自然的綠精靈-茶樹精油. 臺灣: 青林國際出版股份有限公司; 2001.
21. Hammer KA, Carson CF, Riley TV, Nielsen JB. A review of the toxicity of Melaleuca alternifolia (tea tree) oil. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2006;44(5):616-25.
22. Carson CF, Hammer KA, Riley TV. Melaleuca alternifolia (Tea Tree) oil: a review of antimicrobial and other medicinal properties. Clinical microbiology reviews. 2006;19(1):50-62.
23. 陳柏諭. 澳洲茶樹精油水溶性成分抗發炎之機製探討. 國防醫學院輸物化學研究所 碩士論文. 2009.
24. 劉士榮, 高宜娟. 生醫材料. 臺灣: 滄海書局; 2010.
25. Shao J, Zheng J, Liu J, Carr CM. Fourier transform Raman and Fourier transform infrared spectroscopy studies of silk fibroin. Journal of Applied Polymer Science. 2005;96(6):1999-2004.
26. DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology. 2003;41:319-26.
27. Hodge RM, Edward GH, Simon GP. Water absorption and states of water in semicrystalline poly(vinyl alcohol) films. Polymer. 1996;37:1371-6.
28. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. The Journal of biological chemistry. 2000;275(51):40517-28.
29. Hardy JG, Scheibel TR. Composite materials based on silk proteins. Progress in Polymer Science. 2010;35(9):1093-115.
30. Wu J-H, Wang Z, Xu S-Y. Enzymatic production of bioactive peptides from sericin recovered from silk industry wastewater. Process Biochemistry. 2008;43(5):480-7.
31. Wu J-H, Wang Z, Xu S-Y. Preparation and characterization of sericin powder extracted from silk industry wastewater. Food Chemistry. 2007;103(4):1255-62.
32. Zhang F, Zuo BQ, Bai L. Study on the structure of SF fiber mats electrospun with HFIP and FA and cells behavior. Journal of Materials Science. 2009;44(20):5682-7.
33. Zhang X, Baughman CB, Kaplan DL. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth. Biomaterials. 2008;29(14):2217-27.
34. Jin H. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials. 2004;25(6):1039-47.
35. Li C, Vepari C, Jin HJ, Kim HJ, Kaplan DL. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 2006;27(16):3115-24.
36. Wadbua P, Promdonkoy B, Maensiri S, Siri S. Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori. International journal of biological macromolecules. 2010;46(5):493-501.
37. Kim U-J, Park J, Li C, Hyoung-Joon Jin, Valluzz R, Kaplan DL. Structure and Properties of Silk Hydrogels. Biomacromolecules. 2004;5:786-92.
38. Yucel T, Cebe P, Kaplan DL. Vortex-induced injectable silk fibroin hydrogels. Biophysical journal. 2009;97(7):2044-50.
39. Ohgo K, Zhao C, Kobayashi M, Asakura T. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer. 2003;44:841-6.
40. Kang M, Jin H-J. Electrically conducting electrospun silk membranes fabricated by adsorption of carbon nanotubes. Colloid and Polymer Science. 2007;285(10):1163-7.
41. Zhu J, Shao H, Hu X. Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH. International journal of biological macromolecules. 2007;41(4):469-74.
42. Silva SS, Maniglio D, Motta A, Mano JF, Reis RL, Migliaresi C. Genipin-modified silk-fibroin nanometric nets. Macromolecular bioscience. 2008;8(8):766-74.
43. Liu PF, Nakatsuji T, Zhu W, Gallo RL, Huang CM. Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine. 2011;29(17):3230-8.
44. Wang Y, Kuo S, Shu M, Yu J, Huang S, Dai A, et al. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: implications of probiotics in acne vulgaris. Applied microbiology and biotechnology. 2014;98(1):411-24.
45. Min B-M, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25(7-8):1289-97.
46. Baek HS, Park YH, Ki CS, Park J-C, Rah DK. Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surface and Coatings Technology. 2008;202(22-23):5794-7.
47. Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. I. Stability theory. Physics of Fluids. 2001;13(8):2201.
48. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology. 2003;63(15):2223-53.
49. Park WH, Jeong L, Yoo DI, Hudson S. Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer. 2004;45(21):7151-7.
50. Yeo IS, Oh JE, Jeong L, Lee TS, Lee SJ, Park WH, et al. Collagen-Based Biomimetic Nanofibrous Scaffolds: Preparation
and Characterization of Collagen/Silk Fibroin Bicomponent
Nanofibrous Structures. Biomacromolecules. 2008;9:1106-16.
51. Aznar-Cervantes S, Roca MI, Martinez JG, Meseguer-Olmo L, Cenis JL, Moraleda JM, et al. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry. 2012;85:36-43.
52. Zhang X, Reagan MR, Kaplan DL. Electrospun silk biomaterial scaffolds for regenerative medicine. Advanced drug delivery reviews. 2009;61(12):988-1006.
53. Yamada H, Nakao H, Takasu Y, Tsubouchi K. Preparation of undegraded native molecular fibroin solution from
silkworm cocoons. Materials Science and Engineering. 2001;C14:41-6.
54. Cao H, Chen X, Huang L, Shao Z. Electrospinning of reconstituted silk fiber from aqueous silk fibroin solution. Materials Science and Engineering: C. 2009;29(7):2270-4.
55. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, et al. Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. Biomaterials. 2006;27(8):1452-61.
56. KIM SH, NAM YS, LEE TS, PARK WH. Silk Fibroin Nanofiber. Electrospinning, Properties, and Structure. Polymer Journal. 2003;35(2):185-90.
57. Min B-M, Jeong L, Lee KY, Park WH. Regenerated Silk Fibroin Nanofibers: Water Vapor-Induced Structural Changes and Their Effects on the Behavior of Normal Human Cells. Macromolecular bioscience. 2006;6(4):285-92.
58. Wang M, Yu JH, Kaplan DL, Rutledge GC. Production of Submicron Diameter Silk Fibers under Benign Processing Conditions by Two-Fluid Electrospinning. Macromolecules. 2006;39:1102-7.
59. Jeong L, Lee KY, Liu JW, Park WH. Time-resolved structural investigation of regenerated silk fibroin nanofibers treated with solvent vapor. International journal of biological macromolecules. 2006;38(2):140-4.
60. Meinel AJ, Kubow KE, Klotzsch E, Garcia-Fuentes M, Smith ML, Vogel V, et al. Optimization strategies for electrospun silk fibroin tissue engineering scaffolds. Biomaterials. 2009;30(17):3058-67.
61. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials. 2003;24:401-16.
62. Gandhi M, Yang H, Shor L, Ko F. Post-spinning modification of electrospun nanofiber nanocomposite from Bombyx mori silk and carbon nanotubes. Polymer. 2009;50(8):1918-24.
63. Kim J, Kim CH, Park CH, Seo JN, Kweon H, Kang SW, et al. Comparison of methods for the repair of acute tympanic membrane perforations: Silk patch vs. paper patch. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2010;18(1):132-8.
64. Cestari M, Muller V, Rodrigues JH, Nakamura CV, Rubira AF, Muniz EC. Preparing silk fibroin nanofibers through electrospinning: further heparin immobilization toward hemocompatibility improvement. Biomacromolecules. 2014;15(5):1762-7.
65. Phattanarudee S, Chakvattanatham K, Kiatkamjornwong S. Pretreatment of silk fabric surface with amino compounds for ink jet printing. Progress in Organic Coatings. 2009;64(4):405-18.
66. Shi P, Goh JCH. Self-assembled silk fibroin particles: Tunable size and appearance. Powder Technology. 2012;215-216:85-90.
67. Zhang X, Wyeth P. Using FTIR spectroscopy to detect sericin on historic silk. Science China Chemistry. 2010;53(3):626-31.
68. Trovato-Salinaro A, Trovato-Salinaro E, Failla M, Mastruzzo C, Tomaselli V, Gili E, et al. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respiratory research. 2006;7:122.
69. Jaspreet P, Maria T. Recent advances in fibroblast signaling and biology in scleroderma. Current Opinion in Rheumatology. 2004;16(6):739-45.

無法下載圖示 全文公開日期 2019/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE