簡易檢索 / 詳目顯示

研究生: 夏朱勇
Zhu-Yong XIA
論文名稱: 建構於布里淵光時域分析法之光纖感測系統:參數量測與優化
Parameters Measurement and Improvement of Brillouin Optical Time Domain Analysis (BOTDA) Based Optical Fiber Sensing System
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 李三良
San-Liang Lee
吳文方
Wen-Fang Wu
廖啓雯
Chi-Wen Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 97
中文關鍵詞: 布里淵光時域分析系統時域分析混成分佈式感測系統雙光纖量測G語言自動化量測
外文關鍵詞: Brillouin optical time-domain analysis system, Time-domain analysis, Hybrid distributed sensing system, Dual-Fiber measurement, LABVIEW, Automated measurement
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近幾年的發展,當代人對於能源與環境的汙染問題日漸地成為注意的議題。因此需要利用光纖感測技術監測其安全性,本論文採用布里淵光時域分析系統,藉由此系統特性感測距離遠可達公里等級以上,空間解析度約略幾公尺以內,利用光於光纖中的光學散射原理,根據布里淵散射光的頻移量,進一步推算溫度或應變等物理量,並且可在特殊環境與安全性較低的場地適用,監測人員得以於中心機房作場址安全性監測以確保工作安全。
    本研究之主要目的在於針對布里淵光時域分析系統優化,藉由系統參數調整,進而提昇本系統之感測距離,根據文獻探討蒐集的資料進行實驗研究,將系統各項參數進行優化調整,首先透過可調式濾波器輸出通道調整以及泵激光與探測光比例的調配,改善量測到的訊號,明顯地OSNR值大幅提高,而優化後的結果讓本系統感測距離由16公里提升至29公里,空間解析度則是由2公尺提升為1公尺精度。
    本研究也嘗試混成布里淵光時域分析系統與相位靈敏光時域反射系統,除了保留原系統的感測技術,能夠測得溫度與應變的物理量,目前已初步實現斷點檢測的功能,後續將進一步加上相位靈敏光時域反射系統的特性,用於分析在待測光纖中有異常或擾動發生時所形成的背向瑞利散射光的相位變化,將其結合成強大的混成系統,未來希望能夠達到三參數的量測,在此先做初步的應用實驗,並且提出未來的實驗架構及改善方法。為提昇技術應用價值以及本研究針對系統未來達到模組化的目標,我們進行自動化量測的程式撰寫,透過LABVIEW我們能夠實現對於調頻以及量測儀器的控制,我們將此結合並且完成自動化量測,由原先1小時17分鐘的量測時間縮短為34分鐘,達到省時並且節省人力的目的。


    In recent years, energy and environmental pollution have become a topic of attention for contemporary people. Therefore, it is necessary to use optical fiber sensing technology to monitor its safety. This paper adopts the Brillouin optical time-domain analysis system. This system characteristic is the sensing distance can reach the kilometer level or more, and the spatial resolution is within a few meters. The principle of optical scattering in the optical fiber, based on the frequency shift of the Brillouin scattered light, further calculates physical quantities such as temperature or stress and can be applied in particular environments. Safety monitoring to ensure workplace safety. The primary purpose of this research is to optimize the Brillouin optical time-domain analysis system.
    The main purpose of this research is to optimize the Brillouin optical time-domain analysis system. Through the adjustment of system parameters, the sensing distance of the system is improved. The experimental research is carried out based on the data collected from the literature discussion and the system parameters are optimized, First, through the adjustment of the output channel of the adjustable filter and the adjustment of the pump laser and the detection light ratio, the measured signal is improved, and the OSNR value is significantly improved. The optimized result allows the sensing distance of the system to be increased from 16 kilometers to 29 kilometers, the spatial resolution is increased from 2 meters to 1 meter accuracy.
    This research also tried to mix the Brillouin optical time-domain analysis system and the phase-sensitive optical time-domain reflection system. It can measure the physical quantities of temperature and strain and further adding a phase-sensitive optical time-domain reflection system and used to analyze the back Rayleigh scattered light’s phase change when there is an abnormality or disturbance in the fiber under test and combined it into a powerful hybrid system. In the future, hopefully, achieved the measurement of three parameters. First, do preliminary application experiments, and propose future experimental frameworks and improvement methods.To enhance the application of the technology and the goal of this research to achieve modularization of the system in the future, we write programs for automated measurement. Through LABVIEW, auto-controls the measurement time is shortened from 1 hour and 17 minutes to 34 minutes, saving time and human resources.

    摘要 I Abstract II 誌謝 III 圖目錄 VI 第一章 緒論 1 1.1前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 光纖感測原理概說 4 2.1 光學散射原理 4 2.1.1 瑞利散射和米氏散射 5 2.1.2 拉曼散射 6 2.1.3 布里淵散射 7 2.2 光學散射的比較與應用 11 2.3 光纖感測技術 12 2.3.1 逐點式光纖感測 14 2.3.2 分佈式光纖感測 17 2.4 基於布里淵光學的分佈式感測 18 2.4.1 布里淵光時域反射儀(BOTDR) 21 2.4.2 布里淵光相關域分析系統(BOCDA) 22 2.4.3 布里淵光時域分析系統(BOTDA) 22 第三章 布里淵光時域分析系統文獻探討及架構 25 3.1光學元組件與儀器介紹 25 3.1.1光被動元件 25 3.1.2光主動元件 29 3.1.3儀器設備 33 3.2文獻探討 36 3.2.1 空間解析度 37 3.2.2 待測距離 38 3.2.3 布里淵增益 40 3.2.4 混成式分佈式光纖感測 42 第四章 感測系統參數分析及優化 44 4.1 濾波器通道設置 44 4.2 泵激與探測光功率比例實驗 46 4.3 偏振雜訊抑制 47 4.4 感測距離與空間解析度提升 49 4.5 混成式布里淵光時域分析系統初步應用 55 4.6 雙光纖雙參數感測 59 第五章 布里淵光時域分析系統資料擷取開發 66 5.1 LabVIEW 軟體介紹 66 5.2 LabVIEW操作環境基本概念 67 5.2.1 人機介面 67 5.2.2 程式視窗 68 5.2.3 SG程式流程圖 69 5.2.4 DPO程式流程圖 70 5.3控制儀器介紹 71 5.3.1 訊號產生器調頻控制 72 5.3.2 示波器擷取存檔控制 73 5.3.3 自動化量測 74 第六章 結論與未來展望 79 6.1結論 79 6.2未來展望 81 參考文獻 82

    [1] A. M. R. Pinto, M. Lopez-Amo, J. Kobelke and K. Schuster, "Temperature Fiber Laser Sensor Based on a Hybrid Cavity and a Random Mirror," in Journal of Lightwave Technology, vol. 30, no. 8, pp. 1168-1172, April15, 2012.
    [2] N. Guo, L. Wang, J. Wang, C. Jin, H.-Y. Tam, A. Zhang, and C. Lu, “Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing,” Sensors, vol. 16, no. 12, p. 2156, 2016.
    [3] IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp.
    [4] L. Brillouin, “Diffusion de la lumière et des rayons X par un corps transparent homogène,” Annales de Physique, vol. 9, no. 17, pp. 88–122, 1922.
    [5] T. Horiguchi and M. Tateda, "BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory," in Journal of Lightwave Technology, vol. 7, no. 8, pp. 1170-1176, Aug. 1989.
    [6] X. Bao, J. Dhliwayo, N. Heron, D. J. Webb and D. A. Jackson, "Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering," in Journal of Lightwave Technology, vol. 13, no. 7, pp. 1340-1348, July 1995.
    [7] Zrelli, Amira: 'Simultaneous monitoring of temperature, pressure, and strain through Brillouin sensors and a hybrid BOTDA/FBG for disasters detection systems', IET Communications, 2019, 13, (18), p. 3012-3019.
    [8] Weiwen Zou, Xin Long and Jianping Chen (February 25th 2015). Brillouin Scattering in Optical Fibers and Its Application to Distributed Sensors, Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, Moh Yasin, Hamzah Arof and Sulaiman Wadi Harun, IntechOpen.
    [9] 张珊珊. 基于光散射原理的尾气颗粒物检测技术研究[J]. 计算机与数字工程, 2019, 47(5): 1254-1257,1263.
    [10] 楊書銘, “布里淵光時域分析法之感測距離及靈敏度優化研究,” 台灣科技大學電子工程研究所碩士論文,2019.
    [11] 蔡孟軒, “布里淵光時域分析系統之解析度與雙參數量測優化,” 台灣科技大學光電工程研究所碩士論文,2020.
    [12] K. O. Hill and G. Meltz, "Fiber Bragg grating technology fundamentals and overview," in Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
    [13] K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, "Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion," Opt. Lett. 19, 1314-1316 (1994).
    [14] A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan and J. E. Sipe, "Long-period fiber gratings as band-rejection filters," in Journal of Lightwave Technology, vol. 14, no. 1, pp. 58-65, Jan. 1996.
    [15] G. P. Agrawal and S. Radic, "Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing," in IEEE Photonics Technology Letters, vol. 6, no. 8, pp. 995-997, Aug. 1994.
    [16] 陳柏偉,“液體多參數感測之元組件開發與系統量測”,台灣科技大學電子工程研究所碩士論文,2016.
    [17] M. K. Barnoski and S. M. Jensen, "Fiber waveguides: a novel technique for investigating attenuation characteristics," Appl. Opt. 15, 2112-2115 (1976).
    [18] M. K. Barnoski, M. D. Rourke, S. M. Jensen, and R. T. Melville, "Optical time domain reflectometer," Appl. Opt. 16, 2375-2379 (1977).
    [19] A. J. Rogers, "Polarization-optical time domain reflectometry: a technique for the measurement of field distributions," Appl. Opt. 20, 1060-1074 (1981).
    [20] A. J. Rogers, “Distributed Optical-Fibre Sensors,” Optical Fiber Sensors, pp. 143–163, 1987.
    [21] D. Culverhouse, F. Farahi, C. Pannell, and D. Jackson, “Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors,” Electronics Letters, vol. 25, no. 14, p. 913, 1989.
    [22] T. Kurashima, T. Horiguchi, and M. Tateda, "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers," Opt. Lett. 15, 1038-1040 (1990).
    [23] X. Bao, D. J. Webb, and D. A. Jackson, "22-km distributed temperature sensor using Brillouin gain in an optical fiber," Opt. Lett. 18, 552-554 (1993).
    [24] M. Nikles, L. Thevenaz, and P. A. Robert, “Measurement of the distributed-Brillouingain spectrum in optical fibers by using a single laser source,” Conference on Optical Fiber Communication, 1994.
    [25] X. Bao, A. Brown, M. DeMerchant, and J. Smith, "Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses," Opt. Lett. 24, 510-512 (1999).
    [26] V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (2000).
    [27] A. W. Brown, B. G. Colpitts and K. Brown, "Dark-Pulse Brillouin Optical Time-Domain Sensor With 20-mm Spatial Resolution," in Journal of Lightwave Technology, vol. 25, no. 1, pp. 381-386, Jan. 2007.
    [28] M. A. Soto, G. Bolognini, and F. Di Pasquale, "Long-range simplex-coded BOTDA sensor over 120km distance employing optical preamplification," Opt. Lett. 36, 232-234 (2011).
    [29] W. Li, X. Bao, Y. Li, and L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Express 16, 21616-21625 (2008).
    [30] K. Hotate and T. Hasegawa, “Measurement of Brillouin gain spectrum distribution along an optical fiber using a correlation-based technique—proposal, experiment and simulation,” IEICE Trans. Electron. E83-C, 405-412 (2000).
    [31] K. Shimizu, T. Horiguchi, and Y. Koyamada, "Measurement of distributed strain and temperature in a branched optical fiber network by use of Brillouin optical time-domain reflectometry," Opt. Lett. 20, 507-509 (1995).
    [32] K. Hotate and M. Tanaka, “Enlargement of measurement range of optical-fiber Brillouin distributed strain sensor using correlation-based continuous-wave technique,” Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170), 2001.
    [33] A. Motil, A. Bergman, and M. Tur, “[INVITED] State of the art of Brillouin fiber-optic distributed sensing,” Optics & Laser Technology, vol. 78, pp. 81–103, 2016.
    [34] T. Horiguchi, T. Kurashima and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fibers," in IEEE Photonics Technology Letters, vol. 1, no. 5, pp. 107-108, May 1989.
    [35] T. Kurashima, T. Horiguchi, and Mitsuhiro Tateda, "Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers," Appl. Opt. 29, 2219-2222 (1990).
    [36] Culverhouse, D.; Farahi, F.; Pannell, C.N.; Jackson, D.A, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors", Electronics Letters, 1989, 25, (14), p. 913-915.
    [37] T. Kurashima, Tsuneo Horiguchi, and M. Tateda, "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers," Opt. Lett. 15, 1038-1040 (1990).
    [38] S. Diakaridia, Y. Pan, P. Xu, D. Zhou, B. Wang, L. Teng, Z. Lu, D. Ba, and Y. Dong, "Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum," Opt. Express 25, 17727-17736 (2017).
    [39] Q. Sun , X. Tu, S. Sun and Z. Meng, "Long-range BOTDA sensor over 50 km distance employing pre-pumped Simplex coding," 2016 Journal of Optic 18 055501.
    [40] J. Li, W. Zhou, Y. Zhang, W. Dong and X. Zhang, "A Novel Method of the Brillouin Gain Spectrum Recognition Using Enhanced Sobel Operators Based on BOTDA System," in IEEE Sensors Journal, vol. 19, no. 11, pp. 4093-4097, 1 June1, 2019.
    [41] J. Hu, X. Zhang, Y. Yao, and X. Zhao, "A BOTDA with break interrogation function over 72 km sensing length," Opt. Express 21, 145-153 (2013).
    [42] M. Nikles, L. Thevenaz and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," in Journal of Lightwave Technology, vol. 15, no. 10, pp. 1842-1851, Oct. 1997.
    [43] M. L. H. Jamaludin and M. R. Mokhtar, "Polarization and Probe Power Optimisation in Brillouin Optical Time Domain Analysis System," 2018 IEEE 7th International Conference on Photonics (ICP), 2018.
    [44] Q. Wu, S. Nair, M. Shuck, E. v. Oort, A. Guzik, K. Kishida, "Advanced distributed fiber optic sensors for monitoring real-time cementing operations and long term zonal isolation", Journal of Petroleum Science and Engineering, Volume 158,2017.

    無法下載圖示 全文公開日期 2026/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE