簡易檢索 / 詳目顯示

研究生: 杜育宏
Yu-Hong Du
論文名稱: 基於雙視覺系統實現XXY對位平台定位誤差補償之研究
Study on Positioning Error Compensation of XXY Alignment Stage Based on a Dual Visual System
指導教授: 郭永麟
Yong-Lin Kuo
口試委員: 徐勝均
Sheng-Dong Xu
吳宗亮
Tsung-Liang Wu
王可文
Kerwin Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 154
中文關鍵詞: 對位平台運動控制器定位誤差補償影像處理工業攝影機
外文關鍵詞: Alignment stage, Motion controller, Positioning error compensation, Image processing, Industrial camera
相關次數: 點閱:290下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的是整合雙CCD視覺系統與XXY對位平台,並且建構定位誤差補償控制之設計。因為考量到XXY對位平台的部分機構件有加工或組裝誤差的累積,亦或是長時間的使用導致整體運動精度不佳等問題,而導致XXY對位平台單軸移動誤差或多軸同步移動誤差等問題產生,雖然XXY對位平台移動誤差並不會造成機構件上的損壞,但是若要將XXY對位平台使用在高精度要求的環境中,勢必要減少這些不必要的誤差,所以減少XXY對位平台的移動誤差便是本研究之首要課題。

    本研究主要分為兩大部分,XXY對位平台的運動控制系統及使用兩台工業攝影機所組成的雙視覺系統。本研究中的XXY對位平台運動控制系統,是使用National Instruments公司所研發的PCI-7350運動控制卡,並且搭配東方馬達公司所生產的ARM46SAK步進伺服馬達驅動器來控制XXY對位平台的運動狀況。雙CCD視覺系統的部分,主要是利用影像處理技術將位於XXY對位平台上的標靶利用重心法找尋出其座標位置,獲取標靶座標後再回饋給運動控制系統,最後將XXY對位平台所需要完成的目標位置指令建構出來,以達成對位。

    本研究的實驗主要分為兩個部分,第一部分,首先分別將單軸移動誤差、多軸移動誤差以及視覺系統誤差利用雷射測距儀找尋出來,再來先針對單軸移動以及多軸移動,利用數據內插法的方式,將準確的移動量補償至運動控制系統,其目的主要是將XXY對位平台的定位誤差進行補償。第二部分,主要是利用雙CCD鏡頭所擷取的圖像以及影像處理的技術,並且透過圖像座標與世界座標轉換來獲取XXY對位平台實際的移動量,最後採用平均法與數據內插法來將兩個CCD所擷取的圖像數據進行誤差補償,以實現整合雙CCD視覺系統與XXY對位平台。


    The main purpose of this study is to integrate a dual CCD visual system and an XXY alignment stage to construct the of the positioning error compensation design of the stage.Due to the accumulations of machining or assembly errors in some of the mechanical components of the XXY alignment stage or the poor overall motion accuracies caused by long-term uses, the XXY alignment stage has single-axis movement errors, multi-axis synchronous movement errors, and other problems.Although the movement errors of the XXY alignment stage will not cause damages of the mechanical components, it is necessary to reduce these unnecessary errors if the XXY alignment stage is used in an environment with high precision requirements.The movement errors of the XXY alignment stage is the main subject of this study.

    This research is mainly divided into two parts, the motion control system of the XXY alignment stage and the dual vision system composed of two industrial cameras.The XXY alignment stage motion control system in this study is driven by the ARM46SAK stepper servo motors produced by Oriental Motor Corporation, and the motors are controlled by the PCI-7350 motion control card developed by National Instruments through the motor drivers.The part of the dual CCD visual system mainly uses image processing techniques to determine the coordinate positions of the target located on the XXY alignment stage by the center of gravity method, and then the target coordinates are sent back to the motion control system, which controls the XXY alignment stage. Thus, the target position commands can be followed to achieve the stage alignments.

    The experiments of the study are mainly divided into two parts.In the first part, the single-axis movement errors, the multi-axis movement errors, and visual system errors are measured by using a laser rangefinder.By using the interpolation method based on the error data, the exact movement amounts to the motion control system are modified.The main purpose is to compensate the positioning errors of the XXY alignment stage.The second part mainly uses the images captured by the dual CCDs and the image processing techniques to obtain the actual movement amounts of the XXY alignment stage through the conversion of the image coordinates and the world coordinates, and then the average method and the data interpolation are used to compensate the errors of the image data captured by the two CCDs.This process realizes the integration of the dual CCD visual system and the XXY alignment stage.

    目錄 致謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 XIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 對位平台 2 1.2.2 視覺系統 4 1.2.3 定位誤差補償 5 1.3 研究動機 7 1.4 研究方法 8 1.5 研究貢獻 9 1.6 論文架構 10 第二章 雙CCD對位平台系統開發 11 2.1 雙CCD對位平台系統架構 11 2.2 對位平台介紹 12 2.2.1 步進伺服馬達驅動器 14 2.2.2 步進伺服馬達 15 2.2.3 馬達極限感測器 16 2.3 對位平台驅動系統 16 2.3.1 PXI系統 17 2.3.2 運動控制卡 18 2.3.3 控制介面 19 2.4 雙CCD視覺系統 20 2.4.1 雙CCD視覺系統架構 20 2.4.2 工業用相機 22 2.4.3 工業用鏡頭 23 2.5 雷射測距儀 23 第三章 對位平台系統控制 25 3.1 對位平台系統介紹 25 3.2 對位平台控制流程 26 3.2.1 PXI運動控制模組設定 30 3.2.2 PXI運動控制模組測試 38 3.2.3 PXI運動控制模組校正 39 3.3 對位平台運動公式 41 3.4 對位平台控制設計 48 第四章 影像處理系統 52 4.1 雙CCD影像處理系統 53 4.1.1 影像處理流程 53 4.1.2 環境光源設定 54 4.1.3 影像處理實例 55 4.2 影像校正 56 4.3 影像灰階與二值化處理 59 4.4 影像膨脹與侵蝕處理 62 4.5 影像感興趣區域 63 4.6 影像邊緣偵測 64 4.6.1 螺絲孔標靶 65 4.6.2 上板邊緣標靶 66 4.6.3 貼紙標靶 68 4.7 影像重心法 68 第五章 實驗結果 71 5.1 對位平台運動公式驗證 71 5.2 對位平台運動重現性驗證 77 5.3 對位平台運動誤差實驗 86 5.3.1 單軸移動誤差 86 5.3.2 多軸移動誤差 88 5.3.3 視覺系統誤差 103 5.4 對位平台運動誤差補償實驗 108 5.4.1 單軸控制誤差補償 108 5.4.2 多軸控制誤差補償 110 5.4.3 視覺系統誤差補償 124 第六章 結論與未來研究方向 129 6.1 結論 129 6.2 未來研究方向 130 參考文獻 131

    [1] H.-J. Yim, Y.-H. Lee, S.-H. Lee, J.-I. Jeong, and S.-H. Lim, “Multi-layer alignment control of a large area nano-imprinting stage,” Journal of Mechanical Science and Technology, vol. 23, no. 4, pp. 1094-1097, 2009.
    [2] S.-K. Tsau, D.-Y. Hong, H.-W. Le, C.-M. Chang, and C.-H. Lin, “Multiple alignment stage for the automatic precision alignment system,” International Symposium on Computer, Consumer and Control, pp. 926-929, 2012.
    [3] J.-C. Shen, W.-Y. Jywe, Q.-Z. Lu, and C.-H. Wu, “Control of a high precision positioning stage,” IEEE Conference on Industrial Electronics and Applications, pp. 931-935, 2012.
    [4] P. Niranjan, K. Sairam, and S. Karinka, “Position control of single stage dual range positioning system,” IEEE Student Conference on Research and Development, pp. 1-5, 2016.
    [5] N. Ito, S. Wakui, and Y. Nakamura, “Implementation of model following control for a pneumatic stage: Improvement of repeatability and positioning speed,” IEEE International Conference on Advanced Mechatronic Systems, pp. 353-358, 2014.
    [6] S. Basovich, S. A. Arogeti, Y. Menaker, and Z. Brand, “Magnetically levitated six-DOF precision positioning stage with uncertain payload,” IEEE Transactions on Mechatronics, vol. 21, no. 2, pp. 660-673, 2015.
    [7] S. Mori, Y. Sato, A. Sakurada, A. Naganawa, Y. Shibuya, and G. Obinata, “Nano-motion stage for high-speed and precision positioning on an XY plane,” IEEE Transactions on magnetics, vol. 45, no. 11, pp. 4972-4978, 2009.
    [8] J.-Z. Wu, J.-C. Chao, J.-Y. Hsu, and C.-C. Chiang, “Fabrication of the long Bragg grating by excimer laser micro machining with high-precision positioning XXY platform,” Smart Science, vol. 2, no. 1, pp. 20-23, 2014.
    [9] K. Mori, T. Kumagae, and H. Hirai, “Ultrasonic linear motor for a high precision XY stage. In Proceedings,” IEEE Ultrasonics Symposium, pp. 657-660, 1989.
    [10] L. H. I. Lim and D. Yang, “High-precision XY stage motion control of industrial microscope,” IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 1984-1992, 2018.
    [11] Y. Luo, K. Dong, L. Zhao, Z. Sun, E. Cheng, H. Kan, C. Zhou, and B. Song,
    “Calibration-free monocular vision-based robot manipulations with occlusion awareness,” IEEE Access, vol. 9, pp. 85265-85276, 2021.
    [12] X. Yang, M. Han, H. Tan, Q. Li, and X. Luo, “Detecting defects with support vector machine in logistics packaging boxes for edge computing,” IEEE Access, vol. 8, pp.64002-64010, 2020.
    [13] T. Thaher, M. Mafarja, H. Turabih, P. A. Castillo, H. Faris, and I. Aljarah, “Teaching learning-based optimization with evolutionary binarization schemes for tackling feature selection problems,” IEEE Access, vol. 9, pp. 41082-41103, 2021.
    [14] Y. Zhang, H.-G. Soon, D. Ye, J.-Y.-H. Fuh, and K. Zhu, “Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 5769-5779, 2019.
    [15] M. Mittal, A. Verma, I. Kaur, B. Kaur, M. Sharma, L. M. Goyal, S. Roy, and T.-H. Kim, “An efficient edge detection approach to provide better edge connectivity for image analysis,” IEEE Access, vol. 7, pp. 33240-33255, 2019.
    [16] X. Lü, D. Gu, Y. Wang, Y. Qu, C. Qin, and F. Huang, “Feature extraction of welding seam image based on laser vision,” IEEE Sensors Journal, vol. 18, no. 11, pp. 4715-4724, 2018.
    [17] J.-T. Tsai, C.-T. Lin, and J.-H. Chou, “Intelligent data-driven adaptive method for optimizing system integration scaling factors for touch panel lamination machines,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no.
    4, pp. 1300-1309, 2017.
    [18] W.-L. Mao, M.-X. Xie, and C.-W. Hung, “Design of PCB alignment using vision servo control system,” ICIC Express Letters, Part B: Applications, vol. 8, pp. 177-184, 2017.
    [19] Z. Wei, G. Zhang, and X. Li, “The application of machine vision in inspecting positioncontrol accuracy of motor control systems,” Proceedings of the Fifth International Conference on Electrical Machines and Systems, vol. 2, pp.787-790, 2001.
    [20] H.-M. Chen, T.-E. Lee, J.-P. Su, and C.-L. Lin, “Realization of an image-based XXY positioning platform control,” IEEE International Symposium on Computer, Consumer
    and Control, pp.1187-1190, 2014.
    [21] C.-J. Lin, S.-K. Yu, Y.-C. Li, and C.-W. Yang, “Design and control of an optical
    alignment system using a XXY stage integrated with dual CCDs,” Smart Science, vol. 2,
    no. 3, pp. 160-167, 2014.
    [22] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, pp. 679-698, 1986.
    [23] T.-C. Chen and K.-L. Chung, “An efficient randomized algorithm for detecting
    circles,” Computer Vision and Image Understanding, vol. 83, no. 2, pp. 172-191, 2001.
    [24] C.-J. Lin, H.-H. Hsu, C.-H. Cheng, and Y.-C. Li, “Design of an image-servo mask
    alignment system using dual CCDs with an XXY stage,” Applied Sciences, vol. 6, no. 2,
    Art. no. 42, 2016.
    [25] C.-J. Lin, G.-Z. Chen, Y.-X. Huang, and J.-K. Chang, “Computer-integrated microassembling with image-servo system for a microdroplet ejector,” Journal of Materials Processing Technology, vol. 201, no. 1, pp. 689-694, 2008.
    [26] O.-S. Kim, S.-H. Lee, and D.-C. Han, “Positioning Performance and Straightness Error Compensation of the Magnetic Levitation Stage Supported by the Linear Magnetic
    Bearing,” IEEE Transactions on Industrial Electronics, vol. 50, no. 2, pp. 374-378, 2003.
    [27] C.-H. Liu, W.-Y. Jywe, Y.-R. Jeng, H.-L. Huang, T.-H. Hsu, M.-S. Wang, and S.-Y.
    Deng, “Development of a Straightness Measuring System and Compensation Technique
    Using a Multi-Corner Cube for Precision Stages,” Proceedings of the Institution of
    Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 224, no. 3, pp.483-492, 2010.
    [28] C.-H. Liu, J.-H. Chen, and Y.-F. Teng, “Development of a Straightness Measurement and Compensation System with Multiple Right-Angle Reflectors and a Lead Zirconate Titanate-Based Compensation Stage,” Review of Scientific Instruments, vol. 80, no. 11, Art. no. 115105, 2009.
    [29] M.-S. Kang, D.-H. Kim, J.-S. Yoon, B.-S. Park, and J.-K. Lee, “Straightness Error Compensation Servo-System for Single-Axis Linear Motor Stage,” Engineering and Technology, vol. 50, pp. 158-162, 2009.
    [30] B. Li, W. Tian, C. Zhang, F. Hua, G. Cui, and Y. Li, “Positioning error compensation of an industrial robot using neural networks and experimental study,” Chinese Journal of Aeronautics, vol. 35, no. 2, pp. 346-360, 2022.
    [31] W. Zhu, G. Li, H. Dong, and Y. Ke, “Positioning error compensation on twodimensional manifold for robotic machining,” Robotics and Computer-Integrated
    Manufacturing, vol. 59, pp. 394-405, 2019.
    [32] J. Hu, F. Hua, and W. Tian, “Robot positioning error compensation method based on deep neural network,” Journal of Physics: Conference Series, vol. 1487, no. 1, Art. no.012045, 2020.
    [33] C.-S. Liu, J.-Y. Zeng, and Y.-T. Chen, “Development of positioning error measurement system based on geometric optics for long linear stage,” The International Journal of Advanced Manufacturing Technology, vol. 115, no. 7, pp. 2595-2606, 2021.
    [34] J. Wang, W. Zhao, R. Leach, L. Xu, W. Lu, and X. Liu, “Positioning error calibration for two-dimensional precision stages via globally optimized image
    registration,” Measurement, vol. 186, Art. no. 110222, 2021.
    [35] C.-T. Cao, V.-P. Do, and B.-R. Lee, “A novel indirect calibration approach for robot positioning error compensation based on neural network and hand-eye vision,” Applied Sciences, vol. 9, no. 9, Art. no. 1940, 2019.
    [36] H.-W. Lee, C.-H. Liu, Y.-Y. Chiu, and T.-H. Fang, “Design and control of an optical alignment system using a parallel XXY stage and four CCDs for micro pattern
    alignment,” IEEE Symposium on Design, Test, Integration and Packaging of
    MEMS/MOEMS, pp.13-17, 2012.
    [37] S.-J. Huang and S.-Y. Lin, “Application of visual servo-control X-Y table in color filter cross mark alignment,” Sensors and Actuators A: Physical, vol. 152, no. 1, pp. 53-62, 2009.
    [38] H.-W. Lee and C.-H. Liu, “Vision servo motion control and error analysis of a coplanar stage for image alignment motion,” Mathematical Problems in Engineering, vol. 2013, Art. no. 592312, 2013.
    [39] W.-M. Kuo, S.-F. Chuang, C.-Y. Nian, and Y.-S. Tarng, “Precision nano-alignment
    system using machine vision with motion controlled by piezoelectric motor,” Mechatronics, vol. 18, no. 1, pp. 21-34, 2008.
    [40] 「XXY 平台型錄規格表」,全研科技有限公司,2018。https://www.aafteck.com /style/Frame/m9/download.asp?customer_id=2764&lang=1&content_set=color_1&na
    me_id=134921&Directory_ID=16764
    [41] 「αSTEP AR 系列DC 電源輸入脈波列輸入型驅動器規格表」,台灣東方馬達股份有限公司,2019。https://www.orientalmotor.com.tw/products/st/list/detail/?prod uct_name=ARM46SAK%2BARD-K&brand_tbl_code=ST&series_code=IQ00&type_
    code=&type=%E6%A8%99%E6%BA%96
    [42] 「αSTEP AR 系列步進馬達使用說明書」,台灣東方馬達股份有限公司,2018。
    https://www.orientalmotor.com.tw/products/st/list/detail/?product_name=ARM46SAK%2BARD-K&brand_tbl_code=ST&series_code=IQ00&type_code=&type=%E6%A8%99%E6%BA%96
    [43] 「工業攝影機CTCLOPS USB3.0 系列規格表」,光道視覺科技股份有限公司,2016。https://www.aisys.com.tw/web/product/product.php?product_id=129
    [44] 「MP2 機器視覺系列 M0814-MP2 鏡頭規格表」,台灣希比希股份有限公司,2008。 https://computar.com/product/552/M0814-MP2
    [45] 「AR200 Laser Measurement Sensor Data Sheet」,Schmitt Industries,2005。http
    s://www.acuitylaser.com/wp-content/uploads/product-downloads/ar200-data-sheet.pdf
    [46] 「αSTEP AR 系列DC 電源輸入脈波列輸入型用戶手冊」,台灣東方馬達股份有限公司,2021。https://www.orientalmotor.com.tw/products/st/list/detail/?product_name=ARM46SAK%2BARD-K&brand_tbl_code=ST&series_code=IQ00&type_code=&type=%E6%A8%99%E6%BA%96
    [47] 「User Guide Universal Motion Interface (UMI)-7764」,National Instruments,19
    99。 https://usermanual.wiki/Document/UMI7764UserGuide.2181042206
    [48] 「XXY 對位平台角度運算公式」,全研科技有限公司,2018。https://www.aafteck.com/style/Frame/m9/download.asp?customer_id=2764&lang=1&content_set=color_1&name_id=134921&Directory_ID=16764
    [49] K. Bhargavi and S. Jyothi, “A survey on threshold based segmentation technique in image processing,” International Journal of Innovative Research and Development, vol.3, no. 12, pp. 234-239, 2014.
    [50] N. Jawas and N. Suciati, “Image inpainting using erosion and dilation Operation,” International Journal of Advanced Science and Technology, vol. 51, pp. 127-134, 2013.
    [51] C. M. Privitera and L. W. Stark, “Algorithms for defining visual regions-of-interest: comparison with eye fixations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 9, pp. 970-982, 2000.
    [52] 洪子瑜,「高精度平面檢測軟體開發」,國立中山大學機械工程學系碩士論文,1999。

    QR CODE