簡易檢索 / 詳目顯示

研究生: 鄭崇孚
Tsung-Fu Cheng
論文名稱: 心臟血管主動脈弓的動態流場結構與衍化:質點軌跡視流法與PIV量測技術的開發與應用
Pulsatile Flows in the Human Aortic Arch:Flow Diagnostics using Particle Image Velocimetry
指導教授: 黃安橋
An-Chyau Huang
黃榮芳
Rong Fung Huang
口試委員: 楊騰芳
Yang, Ten-Fang
劉昌煥
Chang-Huan, Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 328
中文關鍵詞: 心臟主動脈弓脈動流質點影像速度儀主動脈弓剥離
外文關鍵詞: Aortic dissection, Pulsatile flow, Aortic arch, PIV
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用質點軌跡流場觀察法(PTFV)與質點影像速度儀(PIV)來診測心臟主動脈弓內的流場結構,並探討血液動態行為對主動脈剝離(aortic dissection)的影響。利用自製的脈動壓力模擬器與商用的人工心臟泵浦,輸出穩流、脈動正弦波與心臟脈動波三種不同型態的流場,探討主動脈弓在不同雷諾數與脈動頻率時,管內流場之衍化以及速度、剪應力和邊壁剪應力的分佈。基於管徑的平均雷諾數範圍在2183與4311之間,脈動頻率範圍在0.10與 1.15 Hz之間,Womersley number範圍在3.91 與13.27之間。在實驗中可觀察到,當流體通過彎管時,離心力使流體由外側壁面沿兩側邊壁朝內側壁面捲動,在管路橫截面形成二次流結構,同時在主動脈弓之內側壁面會產生分離現象。二次流與中心流結合成螺旋狀的上升渦漩結構,朝降胸主動脈端流動。在脈動正弦波加速行程與心臟脈動波收縮行程時,擾動範圍控制在管路中心線之內。在脈動正弦波減速行程時,擾動範圍逐漸超過管路中心線;而心臟脈動波舒張行程時,內側壁面則會產生強大的倒流現象。藉由軸向速度與邊壁剪應力的分佈可以推論,在主動脈弓出入口轉彎處的外側壁面承受較大動量垂直分量的衝擊作用而導致速度梯度與邊壁剪應力降低,而主動脈弓中心延伸至降胸主動脈之內側壁面的分離現象會造成血液傳送氧氣與代謝物的效率降低,皆容易產生動脈瘤而導致主動脈剝離的發生。管路橫截面的二次流結構,形成強大的環流朝內側壁面衝擊,容易使動脈內壁所形成的血小板組織沉澱,會使粥狀動脈硬化的情形更加劇烈。


Flow characteristics and evolution process in aortic arch model are diagnosed by using the particle tracking flow visualization method (PTFV) and the particle image velocimetry (PIV) over various Reynolds numbers and pulsating frequencies. The aortic arch is modeled by a transparent plexiglass U-tube. Three types of flows (steady, sinusoidally oscillating, and heat-beat-simulating pulsatile) flows are supplied to the aortic simulator. The Reynolds number ranges from 2183 to 4311 and the pulsating frequency ranges from 0.1 to 1.15 Hz. In terms of the Womersley number, it ranges from 3.91 to 13.27. The time-evolving flow patterns are obtained from the PTFV and the quantitative flow properties, e.g., the velocity vector maps, the streamline patterns, the axial and normal velocity distributions, and the shear-stress contours are derived from the PIV measurements. It is found that the flows evolved complicatedly into three dimensional structures during the processes of acceleration and deceleration. The normal impulse component developed in the flow in the regions around the up- and downstream turning arches of the outer tube-wall are relatively high. This implies that the aortic dissection would be occurring there most easily. The wall shear stress distributions in these two particular regions are lower than those in other regions. A vortical flow motion is found to evolve from the turning arch near the inner wall to the descending thoracic aorta during the systolic process. During the diastolic process, strong reversed flow is produced along the inner walls of curvature. The axial flow velocities in the region of the vortical flow motion, which is induced during the systolic process, are low so that platelet deposition attached on the inner wall becomes possible. This would promote the growth of the atherosclerotic lesions. Besides, the transport of oxygen and metabolites to and from the inner wall are not efficient due to the separation along the inner wall in descending thoracic aorta. Therefore, aortic dissection is conducted in these regions.

頁次 摘要……………………………………………………………………………………… i Abstract………………………………………………………………………………… ii 目錄……………………………………………………………………………………… iii 符號索引………………………………………………………………………………… vi 表圖索引………………………………………………………………………………… viii 第一章 緒論……………………………………………………………………………… 1 1.1 研究動機………………………………………………………… 1 1.2 文獻回顧………………………………………………………… 2 1.2.1 脈動流場相關的研究與應用………………………… 2 1.2.2 心臟血管主動脈弓相關的研究與應用……………… 3 1.3 研究目標………………………………………………………… 6 第二章 實驗設備、儀器與方法………………………………………………………… 8 2.1 心臟血管主動脈弓動態流場模擬設備…………………………… 8 2.1.1 儲水槽………………………………………………… 8 2.1.2 心臟血管主動脈弓模型……………………………… 8 2.1.3 直流抽水馬達………………………………………… 8 2.1.4 人工心臟泵浦………………………………………… 9 2.1.5 整流段………………………………………………… 9 2.1.6 管路系統……………………………………………… 9 2.2 實驗儀器…………………………………………………………… 10 2.2.1 壓力轉換器…………………………………………… 10 2.2.2 葉輪式流量計………………………………………… 10 2.2.3 功率放大器…………………………………………… 10 2.2.4 數據擷取與控制系統………………………………… 11 2.2.5 PID控制器……………………………………………… 11 2.3 質點分析…………………………………………………………… 13 2.4 質點軌跡流場觀察法(PTFV)……………………………………… 13 2.5 質點影像速度儀(PIV)…………………………………………… 14 2.5.1 PIV系統介紹…………………………………………… 14 2.5.2 PIV系統硬體架構……………………………………… 16 2.5.3 PIV系統軟體架構……………………………………… 18 2.5.4 時間平均……………………………………………… 21 2.5.5 樣本平均……………………………………………… 22 第三章 穩定流量的動態流場結構與衍化……………………………………………… 23 3.1 質點軌跡流場可視化所觀察到的流場結構衍化……………… 23 3.1.1 升主動脈截面………………………………………… 23 3.1.2 主動脈弓截面..……………………………………… 24 3.1.3 主動脈弓中心橫截面………………………………… 25 3.1.4 降胸主動脈截面……………………………………… 26 3.2 PIV量測之流場結構衍化型態…………………………………… 27 3.2.1 流場結構與樣本平均次數間的關係………………… 28 3.2.2 升主動脈截面………………………………………… 28 3.2.3 主動脈弓截面………………………………………… 29 3.2.4 主動脈弓中心橫截面………………………………… 31 3.2.5 降胸主動脈截面……………………………………… 33 3.3 流場內部與邊壁之剪應力分佈特性……………………………… 34 3.3.1 流場內部的平均剪應力分佈………………………… 35 3.3.2 軸向平均速度與平均邊壁剪應力的分佈…………… 36 第四章 脈動正弦波的動態流場結構與衍化……………………………………………… 39 4.1 質點軌跡流場可視化所觀察到的流場結構衍化………………… 40 4.1.1 升主動脈截面………………………………………… 40 4.1.2 主動脈弓截面………………………………………… 41 4.1.3 主動脈弓中心橫截面.………………………………… 42 4.1.4 降胸主動脈截面……………………………………… 43 4.2 PIV量測之流場結構衍化型態…………………………………… 44 4.2.1 流場結構與樣本平均次數間的關係..……………… 45 4.2.2 升主動脈截面………………………………………… 45 4.2.3 主動脈弓截面………………………………………… 47 4.2.4 主動脈弓中心橫截面………………………………… 50 4.2.5 降胸主動脈截面……………………………………… 53 4.3 流場內部與邊壁之剪應力分佈特性……………………………… 55 4.3.1 流場內部的平均剪應力分佈………………………… 55 4.3.2 軸向平均速度與平均邊壁剪應力的分佈…………… 56 第五章 心臟脈動波的動態流場結構與衍化…………………………………………… 60 5.1 質點軌跡流場可視化所觀察到的流場結構衍化………………… 60 5.3.1 升主動脈截面………………………………………… 61 5.3.2 主動脈弓截面………………………………………… 62 5.3.3 主動脈弓中心橫截面………………………………… 63 5.3.4 降胸主動脈截面……………………………………… 64 第六章 討論………………………………………………………………………………… 66 6.1 邊壁剪應力分佈對主動脈剝離的影響…………………………… 66 第七章 結論與建議………………………………………………………………………… 68 7.1 結論………………………………………………………………… 68 7.2 建議………………………………………………………………… 69 參考文獻…………………………………………………………………………………… 70

[1] DeBakey, M.E., Lawrie, G.M., Glaeser, D.H., “Patterns of atherosclerosis and their surgical significance,” Annals of Surgery,
Vol. 201, 1985, pp. 115–131.
[2] Shemer, L., Wygnanski, I., and Kit, E., “Pulsatile flow in a pipe,” Journal of Fluids Engineering, Vol. 153, 1985, pp. 313-337.
[3] Nerem, R. M., and Seed, W. A., “An in vivo study of aortic flow disturbances,” Cardiovascular Research, Vol. 6, 1972, pp. 1-14.
[4] Nerem, R. M., “Vascular fluid mechanics, the arterial wall, and atherosclerosis,” Journal of Biomechanical Engineering, Vol. 114, August 1992, pp. 274-283.
[5] He, X. and Ku, D. N., “Unsteady Entrance Flow Development in a Straight Tube,” Journal of Biomechanical Engineering, Vol. 116, August 1994, pp. 355-361.
[6] Ku, D. N., “Blood flow in arteries,” Annual Review of Fluid Mechanic, Vol. 29, 1997, pp. 399-434.
[7] Yu, S. C. M., “Steady and pulsatile flow studies in Abdominal Aortic Aneurysm models using Particle Image Velocimetry,” International Journal of Heat and Fluid Flow, Vol. 21, 2000, pp. 74-83.
[8] Yu, S. C. M. and Zhao, J. B., “A steady flow analysis on the stented and non-stented sidewall aneurysm models,” Medical Engineering & Physics, Vol.21, 1999, pp. 133-141.
[9] Long, Q., Xu. X. Y., Ramnarine, K. V., and Hoskins, P., “Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis,” Journal of Biomechanical, Vol. 34, 2001, pp. 1229-1242.
[10] Lee, K. W. and Xu, X. Y., “Modelling of flow and wall behaviour in a mildly stenosed tube,” Medical Engineering & Physics, Vol. 24, 2002, pp. 575-586.
[11] Steinman, D. A., “Simulated pathline visualization of computed periodic blood flow patterns,” Journal of Biomechanical, Vol. 33, 2000, pp. 623-628.
[12] Steinman, D. A., Poepping, T. L., Tambasco, M., Rankin, R. N., and Holdsworth, D. W., “Flow patterns at the Stenosed Carotid Bifurcation: Effect of Concentric versus Eccentric Stenosis,” Annals of Biomechanical Engineering, Vol. 28, 2000, pp. 415-423.
[13] Zhao, S.Z., Xu, X.Y., Hughes, A.D., Thom, S.A., Stanton, A.V., Ariff, B., and Long, Q., “Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation,” Journal of Biomechanics, Vol. 33, 2000, pp. 975-984.
[14] Zhao, S.Z., Ariff, B., Long, Q., Hughes, A.D., Thom, S.A., Stanton, A.V., and Xu, X.Y., “Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans,” Journal of Biomechanics, Vol. 35, 2002, pp. 1367-1377.
[15] Perktold, K., Hofer, M. Rappitsch, G., Loew, M., Kuban, B.D., and Friedman, M.H., “Validated computation of physiologic flow in a realistic coronary artery branch,” Journal of Biomechanics, Vol. 31, 1998, pp. 217-228.
[16] Zhao, Y., Brunskill, C. T., and Lieber, B. B., “Inspiratory and Expiratory Steady Flow Analysis in a Nodel Symmetrically Bifurcating Airway,” Journal of Biomechanics Engineering, Vol. 119, February 1997, pp. 52-58.
[17] Pivkin, I.V., Richardson, P.D., Laidlaw, D.H., and Karniadakis, G.E., “Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model,” Journal of Biomechanics , Accepted 20 June 2004
[18] Fresconi, F.E., Wexler, A.S., and Prasad, A.K., ”Expiration flow in a symmetric bifurcation,” Experiments in Fluids, Vol. 35, 2003, pp. 493-501.
[19] Heise, M., Schmidt, S., Kruger, U., Ruckert, R., Rosler, S., Neuhaus, P., and Settmacher, U., “Flow pattern shear stress distribution of distal end-to-side anastomoses. A comparison of the instantaneous velocity fields obtained by particle image velocimetry,” Journal of Biomechanics, Accepted 17 November 2003
[20] How. T. V., Rowe, C. S., Gilling-Smith, G. L., and Harris P. L., ”Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery,” Journal of Vascular Surgery, May 2000, pp. 1008-1016.
[21] Fisher, R. K., How, T. V., Carpenter, T., Brennan, J. A., and Harris, P. L., “Optimising Miller Cuff Dimensions. The Influence of Geometry on Anastomotic Flow Patterns,” Eur J Vasc Endovasc Surg, Vol. 21, March 2001, pp. 251-260.
[22] Fisher, R. K., How, T. V., Toonder, I. M., Hoedt, M. T. C., Brennan, J. A., Gilling-Smith, G. L., and Harris, P. L., “Harnessing Haemodynamic Forces for the Suppression of Anastomotic Intimal Hyperplasis: the Rationale for Precuffed Graffst,” Eur J Vasc Endovasc Surg, Vol. 21, June 2001, pp. 520-528.
[23] Henry, F. S., Collins, M. W., Hughes, P. E., and How, T. V., “Numerical Investigation of Steady Flow in Proximal and Distal End-to-Side Anastomoses,” Journal of Biomechanical Engineering, Vol. 118, August 1996, pp. 302-309.
[24] Bluestein, D., Rambod, E., and Gharib M., “Vortex Shedding as a Mechanism for Free Emboli Formation in Mechanical Heart Valves,” Journal of Biomechanical Engineering, Vol. 122, April 2000, pp. 125-134.
[25] Lim, W.L., Chew, Y.T., Chew, T.C., and Low, H.T., “Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage,” Journal of Biomechanics, Vol. 34, 2001, pp. 1417-1427.
[26] Lim, W.L., Chew, Y.T., Chew, T.C., and Low, H.T., “Steady flow dynamics of prosthetic aortic heart valves: a comparative evaluation with PIV techniques,” Journal of Biomechanics, Vol. 31, 1998, pp. 411-421.
[27] Lee, C. S. and Talbot, L., “A fluid-mechanical study of the closure of heart valves,” Journal of Fluid Mechanics, Vol. 91, part 1, 1979, pp. 41-63.
[28] Chandran. K. B., Yearwood, T. L., and Wieting, D. W., “An experimental study of pulsatile flow in a curved tube,” Journal of Biomechanics, Vol. 12, 1979, pp. 793-805.
[29] Choi, U. S., Talbot, L., and Cornet, I., “Experimental study of wall shear rates in the entry region of a curved tube,” Journal of Fluid Mechanics, Vol. 93, part 3, 1979, pp. 465-489.
[30] Yearwood, T. L. and Chandran, K. B., “Experimental investigation of steady flow through a model of the human aortic arch,” Journal of Biomechanics, Vol. 13, 1980, pp. 1075-1088.
[31] Chandran, K. B. and Yearwood, T. L., “Experimental study of physiological pulsatile flow in a curved tube,” Journal of Fluid Mechanics, Vol. 111, 1981, pp. 59-85.
[32] Yearwood, T. L. and Chandran, K. B., “Physiological pulsatile flow experiments in a model of the human aortic arch,” Journal of Biomechanics, Vol. 15, No. 9, 1984, pp. 683-704.
[33] Khalighi, B., Chandran, K. B., and Chen C. J., “Steady flow development past valve prostheses in a model human aorta-I. Centrally occluding valves,” Journal of Biomechanics, Vol. 16, No. 12, 1983, pp. 1003-1011.
[34] Khalighi, B., Chandran, K. B., and Chen C. J., “Steady flow development past valve prostheses in a model human aorta-Ⅱ. Tilting disc Valves,” Journal of Biomechanics, Vol. 16, No. 12, 1983, pp. 1013-1018.
[35] Chandran, K. B., Cabell, G. N., Khalighi, B., and Chen C. J., “Pulsatile flow past aortic valve bioprostheses in a model human aorta,” Journal of Biomechanics, Vol. 17, No. 8, 1984, pp. 609-619.
[36] Chandran, K. B., Khalighi, B., and Chen C. J., “Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta- I. Caged ball valves,” Journal of Biomechanics, Vol. 18, No. 10, 1985, pp. 763-772.
[37] Chandran, K. B., Khalighi, B., and Chen C. J., “Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta- Ⅱ. Tilting disc valves and the effect of orientation,” Journal of Biomechanics, Vol. 18, No. 10, 1985, pp. 773-780.
[38] Gijsen, F.J.H., Allanic, E., Vosse, F.N. Van de, and Janssen, J.D., “The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90° curved tube,” Journal of Biomechanics, Vol. 32, 1999, pp. 705-713.
[39] Tada, S., Oshima, S., and Yamane, R., “Classification of Pulsating Flow Patterns in Curved Pipes,” Journal of Biomechanical Engineering, Vol. 118, August 1996, pp. 311-317.
[40] Qiu, Y. and Tarbell, J.M., “ Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery,” Journal of Biomechanical Engineering, Vol. 122, February 2000, pp. 77-85.
[41] Shancheraghi, N., Dwyer, H. A., Cheer, A. Y., Barakat, A. I., and Rutaganira, T., “Unsteady and three-Dimensional Simulation of Blood Flow in the Human Aortic Arch,” Journal of Biomechanical Engineering, Vol. 124, August 2002, pp. 378-387.
[42] Kim, T., Cheer, A.Y., and Dwyer, H.A., “A simulated dye method for flow visualization with a computational model for blood flow,” Journal of Biomechanics, Vol. 37, 2004, pp. 1125-1136.
[43] Niu, Y. Y. and Tcheng, S. C., “Computations of pulsatile aortic blood flow problems on parallel computers,” Biomedical Engineering -Applications, Basis & Communications, Vol. 15, No. 3. June 2003, pp. 109-113.
[44] Niu, Y. Y., Chu, W. K., Yu, H. Y., and Wang, Y. H., “Numerical prediction of shear stress distributions for a dissected aorta,” Biomedical Engineering-Applications, Basis & Communications, Vol. 16, No. 3. June 2004, pp. 143-150.
[45] Wood, N.B., Weston, S.J., Kilner, P.J., Gosman, A.D., and Firmin, D.N., “Combined MR Imaging and CFD Simulation of Flow in the Human Descending Aorta,” Journal of Magnetic Resonance Imaging, Vol. 13, 2001, pp. 699-713.
[46] Richard, C. F. and John, H. S., Fundamentals of air pollution engineering, New Jersey, 1988, pp. 290-357.
[47] Womersley, J.R., “Method for the calculation of velocity rate of flow and viscous drag in arteries when the pressure gradient is known,” Journal of Physiol., Vol. 127, 1955, pp. 553-563.
[48] 彭楷瑜(編譯),漫畫心臟血管系統,合記圖書出版社,2003.

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE