簡易檢索 / 詳目顯示

研究生: 許清閔
Ching-min Hsu
論文名稱: 後掠翼之流場、渦旋流逸與氣動力性能:流場可視化與PIV技術的發展與應用
Flow Field, Vortex shedding, and Aerodynamic Performance of a Swept-back Wing
指導教授: 黃榮芳
Rong-fung Huang
口試委員: 孫珍理
none
陳明志
none
葉啟南
none
蘇裕軒
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 156
中文關鍵詞: 質點影像測速儀渦旋流逸後掠翼流場可視化氣動力性能
外文關鍵詞: Aerodynamic performance, PIV, Vortex shedding, Flow visualization, Swept-back wing
相關次數: 點閱:484下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對具15o後掠角之NACA 0012剖面的有限長度懸臂機翼,探討雷諾數及攻角的變化,對後掠翼表面流場、氣動力性能及尾流區之流場結構的影響。在低雷諾數區域,透過煙線流場可視化的觀察,翼表面的流場行為有五種特徵模態產生,分別為貼附表面流、不穩定波尾流、渦旋尾流、翼前緣分離及鈍體尾流模態。在高雷諾數區域,藉由表面油膜流法觀察,翼表面的流場行為有六種特徵模態發生,分別為層流分離、分離泡、翼前緣泡、分離泡延展、紊流分離及鈍體尾流模態。故在弦長雷諾數對攻角的圖面上,可劃分出十一種表面流場之特徵模態,這些表面流場的動態衍化與時間平均的流形,均以拓樸分析而得到特徵模型。利用六力平衡儀量測後掠翼之氣動力性能,搭配流場觀察的結果,發現氣動力性能與表面流場的特徵有密切的關係,並且在翼表面的流場特徵為分離泡延展模態時發生失速。根據熱線風速儀輸出的時序圖及所對應的頻譜圖,尾流區有四種不同的渦旋流逸之特徵,分別為層流、次臨界、過渡及超臨界模態。渦旋流逸的特徵與表面流場之行為有密切的相關。將渦旋流逸的頻率作無因次化分析,而獲得渦旋流逸的頻率、史卓數及洛斯柯數與雷諾數及攻角之間的關係。並以統計分析的理論,針對尾流區不同的渦旋流逸之特徵,探討概率密度函數、相關係數、渦旋與紊流的時間尺度與長度尺度。最後,針對不同的翼表面之流場特徵,應用PIV的技術,取得表面流場結構之全域速度場,得到量化的流場結構,使得拓樸結果更清晰的顯現。同時,環繞在機翼周圍的渦度場與紊流場特性也都予以量化。


    Effects of the chord Reynolds number and root angle-of-attack on the surface flow, the vortex shedding, and the aerodynamic performance of a finite back-swept wing are experimentally studied. The cross-sectional profile of the wing is NACA 0012 and the back swept angle is 15 degrees. The aspect ratio of the finite wing is 5. The surface flow field is visualized by using the techniques of the smoke-wire and the surface oil-flow. Five characteristic flow modes are found in the low Reynolds number regime according to the smoke-streak flow patterns and six are categorized at high Reynolds numbers by observing the patterns of the surface oil-flow. Flow topologies of the surface flow modes in various characteristic flow regimes and the time-dependent wake evolution processes are analyzed by the separatrices, alley ways, and critical points. A six component balance is employed to measure the aerodynamic performance. A hot-wire anemometer is used to detect the frequency variation of the unsteady structure in the wake. It is found that the aerodynamic performance of the wing and the Strouhal characteristics of the vortical evolution in the wake are closely related to the characteristic modes of the surface flow. In addition, the vortex shedding in the wake presents variations in turbulence characteristics, which can also be attributed to the changes in characteristic modes of the surface flow. The statistical properties of turbulence, e.g., the power spectrum density function, probability density function, correlation coefficient, time and length scales of turbulence are extracted from the raw data obtained from the hot-wire anemometer measurements. Additionally, the velocity field around the wing section is quantified by employing the particle image velocimeter (PIV). The velocity vector field, streamline patterns, vorticity distributions, and turbulence kinetic energies of various flow modes are presented and discussed.

    摘要 Abstract 致謝 目錄 符號索引 表圖索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.2.1 表面流場與氣動力性能 1.2.2 尾流區非穩態流場結構 1.2.3 後掠翼 1.3 研究目標 第二章 研究構思及實驗設備、儀器與方法 2.1 研究構思 2.2 實驗設備 2.2.1 風洞 2.2.2 機翼模型 2.3 實驗儀器及方法 2.3.1 自由流速的偵測 2.3.2 煙線流場可視化 2.3.3 流場可視化-表面油膜流法 2.3.4 尾流渦旋流逸之模態與頻率的偵測 2.3.5 機翼氣動力性能負荷感測 2.3.6 質點影像速度儀(PIV) 第三章 後掠翼的流場特徵 3.1 低雷諾數之流場 3.1.1 流場的特徵模態 3.1.2 流場的特徵模態之拓樸分析 3.1.3 渦旋尾流模態之流場衍化過程與拓樸分析 3.1.4 機翼側視流場特徵觀察 3.2 高雷諾數之流場 3.2.1 流場的特徵模態 3.2.2 邊界層分離、再接觸及分離泡的行為與特性 3.3 高、低雷諾數流場的比較與討論 第四章 後掠翼的氣動力性能 4.1 氣動力性能 4.1.1 升力係數 4.1.2 阻力係數 4.1.3 力矩係數 4.1.4 升力與阻力係數的特性 4.2 失速攻角之氣動力性能的討論 第五章 後掠翼之尾流渦旋流逸 5.1 尾流區渦旋流逸之特徵模態 5.2 尾流區渦旋流逸之頻率特性 5.3 尾流區渦旋流逸之統計分析 5.3.1 概率密度函數 5.3.2 相關性係數 5.3.3 特徵長度尺度 第六章 後掠翼流場量化分析 6.1 特徵模態之速度場 6.1.1 速度向量流線圖 6.1.2 拓樸分析 6.2 特徵模態之渦度分佈 6.3 特徵模態之紊流擾動動能分佈 第七章 結論與建議 7.1 結論 7.2 建議 參考文獻

    [1] Carmichael, B. H., “Low Reynolds number airfoil survey,” Vol. 1, NASA CR 165803, 1981.
    [2] Crabtree, L. F., “Effect of leading edge separation on thin wings in two-dimensional incompressible flow,” Journal of the aeronautical sciences, Vol. 24, No. 8, 1957, pp. 597-604.
    [3] Ward, J. R., “The behaviour and effects of laminar separation bubbles on aerofoils in incompressible flow,” Journal of the Royal aeronautical society, Vol. 67, Dec. 1963, pp. 783-790.
    [4] Arena, A. V. and Mueller, T. J., “Laminar separation, transition, and turbulent reattachment near the leading edge of airfoils,” AIAA Journal, Vol. 18, No. 7, July 1980, pp. 747-753.
    [5] Mueller, T. J. and Batill, S. M., “Experimental studies of separation on a two-dimensional airfoil at low Reynolds numbers,” AIAA Journal, Vol. 20, No. 4, April 1982, pp. 457-463.
    [6] Lissaman, P. B. S., “Low Reynolds numbers airfoils,” Annual Review of Fluid Mechanics, Vol. 15, 1983, pp. 223-239.
    [7] O’Meara, M. M. and Mueller, T. J., “Laminar separation bubble characteristics on an airfoil at low Reynolds numbers,” AIAA Journal, Vol. 25, No. 8, Aug. 1987, pp. 1033-1041.
    [8] Mueller, T. J., Pohlen, L. J., Conigliaro P. E., and Jansen, B. J., “The influence of free-stream dimensional on low Reynolds number airfoil experiments,” Experiments in Fluids, Vol. 1, 1983, pp. 3-14.
    [9] Mueller, T. J., “The influence of laminar separation and transition on the low Reynolds number airfoil hysteresis,” Journal of Aircraft, Vol. 22, No. 9, Sep. 1985, pp. 763-770.
    [10] Schewe, G., “Reynolds-number effects in flow around more-or-less bluff bodies,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, 2001, pp. 1267-1289.
    [11] Huang, R. F. and Lin, C. L., “Vortex shedding and shear-layer instability of wing at low-Reynolds numbers,” AIAA Journal, Vol. 33, No. 8, Aug. 1995, pp. 1398-1403.
    [12] Marris, A. W., “A review on vortex streets, periodic wakes, and induced vibration phenomena,” Journal of Basic Engineering, Vol. 86, June 1964, pp. 185-194.
    [13] Berger, E. and Wille, R., “Periodic flow phenomena,” Annual Review of Fluid Mechanics, Vol. 4, 1972, pp. 313-340.
    [14] Griffin, O. M., “A note on bluff body vortex formation,” Journal of Fluid Mechanics, Vol. 284, 1995, pp. 217-224.
    [15] Zdravkovich, M. M., “Different modes of vortex shedding: an overview,” Journal of Fluid and Structures, Vol. 10, 1996, pp. 427-437.
    [16] Matsumoto, M., “Vortex shedding of bluff bodies: a review,” Journal of Fluid and Structures, Vol. 13, 1999, pp. 791-811.
    [17] Roshko, A., “On the wake and drag of bluff body,” Journal of the Aerospace Science, Vol. 22, 1955, pp. 124-130.
    [18] Levi, E., “A universal Strouhal law,” ASCE Journal of Engineering Mechanics, Vol. 107, 1983, pp. 718-727.
    [19] Nakamura, Y., “Vortex shedding from bluff bodies and a universal Strouhal number,” Journal of Fluid and Structures, Vol. 10, 1996, pp. 159-171.
    [20] Hah, C. and Lakshminarayana, B., “Measurement and prediction of mean velocity and turbulence structure in the near wake of an airfoil,” Journal of Fluid Mechanics, Vol. 115, 1982, pp. 251-282.
    [21] Park, S. O., Kim, J. S., and Lee, B. I., “Hot-wire measurement of near wakes behind an oscillating airfoil,” AIAA Journal, Vol. 28, No. 1 , Jan. 1990, pp. 22-28.
    [22] Koochesfahani, M. M., “Vortical patterns in the wake of an oscillating airfoil,” AIAA Journal, Vol. 27, No. 9, Sep. 1989, pp. 1200-1205.
    [23]Ramjee, V., Tulapurkara, E. G., and Rajasekar, R., “Development of airfoil wake in a longitudinally curved stream,” AIAA Journal, Vol. 26, No. 8, Aug. 1988, pp. 948-953.
    [24] Piradeepan, N. and Mokhtarzadeh-Dehghan, M. R., “Measurement of mean and turbulence quantities in the curved wake of an airfoil,” Experimental Thermal and Fluid Science, Vol. 29, 2005, pp. 239-252.
    [25] Swirydczuk, J., “A visualization study of the interaction of a free vortex with the wake behind an airfoil,” Experimental in Fluids, Vol. 9, 1990, pp. 181-190.
    [26] Gregory, N., Stuart, J. T., and Walker, W. S., “On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 248, No. 943, July 1955, pp. 155-199.
    [27] Sendai, Y. K., “Some expectation on the mechanism of cross-flow instability in a swept wing flow,” Acta Mechanica, Vol. 66, 1987, pp. 21-38.
    [28] Poll, D. I. A., “Spiral vortex flow over a swept-back wing,” Aeronautical Journal, Vol. 90, No. 895, May 1986, pp. 185-199.
    [29] Patterson, A., Rymarz, P., and Ramaprian, B. R., “Surface pressure measurements on a pitching swept wing in a water channel,” AIAA Journal, Vol. 33, No. 10, Oct. 1995, pp. 1871-1879.
    [30] Rymarz, P. and Ramaprian, B. R., “Measurements of velocity and vorticity Fields around a pitching swept wing,” AIAA Journal, Vol. 35, No. 1, 1997, pp.205-207.
    [31] Subaschandar, N. and Prabhu, A., “Turbulent near-wake studies behind an infinitely swept wing,” Journal of Aircraft, Vol. 39, No. 2, March-April 2002, pp. 290-295.
    [32] Zhang, H., Lu, Z. Y., Yuan, H. J., “Flow visualization of swept wing/body junctions,” Journal of Beijing University of Aeronautics and Astronautics, Vol. 26, No. 6, 2000, pp. 684-687.
    [33] Shames, I. H., Mechanics of fluid, 3rd ed., McGraw-Hill, Inc., Singapore, 1992, pp. 632.
    [34] Abbott, I. H. and Von Doenhoff, A. E., Theory of Wing Section, Dover Publications, New York, 1959, pp. 50-53.
    [35] Batill, S. M. and Mueller, T. J., “Visualization of transition in the flow over an airfoil using the smoke-wire technique,” AIAA Journal, Vol. 19, No. 3, March 1981, pp. 340-345.
    [36] Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey, 1988, pp. 295-307.
    [37] Maskell, E. C., “Flow separation in three dimensions,” Royal Aircraft Estabilishment Report 2565, 1955.
    [38] Squire, L. C., “The motion of a thin oil sheet under the steady boundary layer on a body,” Journal of Fluid Mechanics, Vol. 11, 1961, pp. 161-179.
    [39] Schlichting, H., Boundary Layer theory, 7th ed, McGraw-Hill book company, New York, 1993, pp. 699.
    [40] Merzkrich, W., Flow Visualization, Academic press, New York, 1974, pp. 53-56.
    [41] Bertin, J. J. and Swth, M. L., Aerodynamics for Engineers, 2nd ed., Prentice Hall, Englewood Cliffs, 1989, pp. 204-213 and pp. 235-257.
    [42] Lighthill, M. J., Laminar Boundary Layer, ed. Rosenhead, L., Oxford University, College of Engineer, 1963, pp. 44-88.
    [43] Perry, A. E., and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. B, Vol. 18, 1974, pp. 299-315.
    [44] Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
    [45] Perry, A. E. and Steiner T. R., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 233-270.
    [46] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
    [47] Coutanceau, M., and Pineau G., Some Typical Mechanisms in the Early Phase of the Vortex-Shedding Process from Particle-Streak Visualization. Atlas of Visualization III, eds. Nakayama, Y. and Tanida, Y., CRC Press, Boca Raton, 1997, pp. 43-68.
    [48] Steiner, T. R. and Perry, A. E., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271-298.
    [49] Hoerner, S. F. and Borst, H. V., Fluid Dynamic Lift, Mrs. Liselotte A. Hoerner, Brick Town, New Jersey, 1975, pp. 422-423 and 156-158.
    [50] Lienhard, J. H., Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders, Research Division Bulletin 300, Washington State University, 1966.

    QR CODE