簡易檢索 / 詳目顯示

研究生: 林瑋城
Wei-Cheng Lin
論文名稱: 圓柱與壁面交接處附近之馬蹄形流場結構
Horseshoe Flow Structure Around Junction of a Circular Cylinder and Wall
指導教授: 黃榮芳
Rong-Fang Huang
口試委員: 孫珍理
Chen-li Sun
林怡均
Yi-Jun Lin
張家和
Chir-Ho, Chang
許清閔
Ching-Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 229
中文關鍵詞: 圓柱馬蹄形渦流質點影像速度儀
外文關鍵詞: circular cylinder, horseshoe vortex, junction flow
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在拖曳式水槽中使用實驗方法,探討圓柱與壁面交接處附近的流場特性。以雷諾數與邊界層位移厚度(boundary layer displacement thickness)為參數,對圓柱上、下游之流場特徵行為及速度場特性進行研究。使用質點軌跡視流法,觀察圓柱周圍的流場特徵;並利用質點影像速度儀量化圓柱周圍流場的結構。藉由分析圓柱與壁面之交接處上游的中心垂直面流場可視化照片,在不同的雷諾數與邊界層位移厚度範圍內,流場可區分為四種特徵模態:單渦漩、雙渦漩、三渦漩及不穩定模態。在圓柱上游接近圓柱底部之水平面上,馬蹄形渦漩與自由流分別有向上游流動及向下游流動之速度分量,兩個速度分量交會於平面上一點,接著由兩側分開向下游運動,因此形成一個四向鞍點。在圓柱與壁面之交接處下游的中心垂直平面上,長時間之平均速度及流線分佈圖中主要的流場特徵為分歧線及源點。在圓柱下游水平面上,長時間之平均速度及流線分布圖中主要的流場特徵為兩顆反向旋轉之渦漩。利用質點影像速度儀方法,分析尾流區流速隨時間之變化,研究不同流場模態對尾流渦漩逸放頻率之影響,結果發現接近圓柱底之水平面上觀察不到渦漩逸放之現象。


    The effects of Reynolds number and boundary layer displacement thickness on the flow field characteristics near the junction between the circular cylinder and the wall were experimentally investigated in a water towing tank. The qualitative and quantitative characteristic flow behaviors near the junction of the circular cylinder were measured by particle tracking flow visualization method and particle image velocimetry (PIV), respectively. By observing the flow patterns of horseshoe vortex appearing in the vertical symmetry plane upstream the circular cylinder, four characteristic flow modes were identified in the domain of Reynolds number and boundary layer displacement thickness—single-vortex mode, dual-vortex mode, triple-vortex mode, and unsteady-vortex mode. Near the wall surface upstream the circular cylinder, the horseshoe vortex and freestream in the horizontal plane induced two flows approaching each other and then departed away from a specific point so that a four-way saddle is formed. In the downstream area, a bifurcation line appeared in the vertical symmetry plane and two counter-rotating recirculation bubbles exhibited in the horizontal plane. The frequency characteristics of unsteady flow structure at various characteristic flow modes in the wake region were examined by extracting the time-series velocity data from PIV measurement. No peak frequency was detected near the wall surface.

    摘要 ................................................................................................................i Abstract..........................................................................................................ii 致謝 ..............................................................................................................iii 目錄 ...............................................................................................................v 符號索引 .....................................................................................................vii 表圖索引 ....................................................................................................viii 第一章 緒論 ................................................................................................. 1 1.1 研究動機.......................................................................................... 1 1.2 文獻回顧.......................................................................................... 2 1.2.1 橋墩沖刷相關研究................................................................. 2 1.2.2 馬蹄型渦流相關研究............................................................. 3 1.3 研究目標.......................................................................................... 5 第二章 實驗設備、儀器與方法.............................................................. 6 2.1 實驗設備........................................................................................ 6 2.1.1 拖曳式水槽............................................................................ 6 2.1.2 圓柱模型.............................................................................. 6 2.2 實驗儀器及方法.............................................................................. 7 2.2.1雷射光頁................................................................................. 7 2.2.2數位相機................................................................................. 7 2.2.3 質點特性分析........................................................................ 7 2.2.4質點軌跡流場觀察法(PTFV).................................................. 8 2.2.5質點影像速度儀(PIV)............................................................. 8 第三章 圓柱與壁面交接處上游垂直面流場特徵..................................... 14 3.1 垂直平面流場特徵........................................................................ 14 3.1.1 時間衍化可視化................................................................... 14 3.1.2 手繪示意圖.......................................................................... 16 3.1.3 流場特徵模態...................................................................... 17 3.2 垂直平面的量化流場特徵............................................................. 18 3.2.1 速度與流線圖...................................................................... 18 3.2.2 流場拓樸分析...................................................................... 21 3.3結果比較與討論............................................................................ 23 第四章 圓柱與壁面交接處上游水平面流場特徵..................................... 25 4.1 水平面流場特徵............................................................................ 25 4.2 水平面的量化流場特徵................................................................. 30 第五章 圓柱與壁面交接處下游垂直面流場特徵..................................... 34 5.1 水平面流場特徵............................................................................ 34 5.2 水平面的量化流場特徵................................................................. 36 第六章 圓柱與壁面交接處下游水平面流場特徵..................................... 38 6.1 水平面流場特徵............................................................................ 38 6.2 水平面的量化流場特徵................................................................. 44 6.3 尾流渦漩逸放分析........................................................................ 48 第七章 結論與建議.................................................................................... 52 7.1 結論................................................................................................ 52 7.2 建議................................................................................................ 53 參考文獻 ..................................................................................................... 55

    [1]Dargahi, B., “Controlling Mechanism of Local Scouring,” Journal of Hydraulic Engineering, Vol. 116, No. 10, 1990, pp. 1197-1214
    [2]Devenport, W. J., and Agarwal, N. K., and Dewitz, M. B., and Simpson, R. L., “Effects of a Leading-Edge Fillet on the Flow Past an Appendage-Body Junction,” AIAA Journal, Vol. 30, No. 9, 1992, pp. 2177-2183.
    [3]Ahmed, F., and Rajaratnam, N., ”Flow around Bridge Piers,” Journal of Hydraulic Engineering, Vol. 124, No. 3, 1998, pp. 288-300.
    [4]Bruce, W. M., and Arved, J. R., ” Flow Characteristics in Local Scour at Bridge Piers,” Journal of Hydraulic Research, Vol. 15, No. 4, 1977, pp. 373-380.
    [5]Melville, B., and Chiew, Y., ”Time Scale for Local Scour at Bridge Piers,” Journal of Hydraulic Engineering, Vol. 125, No. 1, 1999, pp. 59-65.
    [6]Baker, C. J., “The Laminar Horseshoe Vortex,” Journal of Fluid Mechanics, Vol. 95, No. 2, 1979, pp. 347-367.
    [7]Baker, C. J., “The position of points of maximum and minimum shear stress upstream of cylinders mounted normal to flat plates,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, No. 3, 1985, pp. 263-274.
    [8]Hunt, J. C. R., and Abell, C. J., and Peterka, J. A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, No. 1, 1978, pp. 179-200.
    [9]Chou, J. H., and Chao, S. Y., ” Branching of a horseshoe vortex around surface-mounted rectangular cylinders,” Experiments in Fluids, Vol. 28, No. 5, 2000, pp. 394-402
    [10]Roger, L. S., ” Junction flows,” Annual Review of Fluid Mechanics, Vol. 33, 2001, pp. 415-443.
    [11]Wei, Q. D., and Cheng, G., and Du, X. D., “An Experimental Study on the Structure of Juncture Flows,” Journal of Visualization, Vol. 3, No. 4, 2001, pp. 341-348.
    [12]Sumner, D., and Heseltine, J. L., and Dansereau, O. J. P., “Wake structure of a finite circular cylinder of small aspect ratio,” Experiments in Fluids, Vol. 37, No. 5, 2004, pp. 720-730
    [13]Pattenden, R. J., and Turnock, S. R., and Zhang, X., “Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane,” Experiments in Fluids, Vol. 39, No. 1, 2005, pp. 10-21.
    [14]Wei, Q. D., and Wang, J. M., and Chen, G., and Lu, Z. B., and Bi, W. T., “Modification of junction flows by altering the section shapes of the cylinders,” Journal of Visualization, Vol. 11, No. 2, 2008, pp. 115-124
    [15]Richard, C. F., and John, H. S., Fundamentals of Air Pollution Engineering, Prentice Hall, 1988, pp. 290-357
    [16]Lighthill, M. J., Laminar Boundary Layer, Ed. Rosenhead, L., Oxford University, 1963, pp. 44-88
    [17]Perry, A. E., and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. B, Vol. 18, part 2, 1974, pp. 299-315.
    [18]Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
    [19]Lyn, D. and Rodi, W., “The flapping shear layer formed by flow separation from the forward corner of square cylinder,” Journal of Fluid Mechanics, Vol. 267, May 1994, pp. 353-376.
    [20]Rodriguez, M. y. D., and Romero-Mendez R., and Ramos-Palau M., and Perez-Gutierrez F. G., ” The laminar horseshoe vortex upstream of a short-cylinder confined in a channel formed by a pair of parallel plates,” Journal of Visualization, Vol. 9, No. 3, 2006, pp. 309-318.
    [21]Lienhard, J. H., Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders, Washington State University, 1966, pp. 3-10.
    [22]Wang, J. M., and Bi, W. T., and Wei, Q. D., “Effects of an upstream inclined rod on the circular cylinder–flat plate junction flow,” Experiments in Fluids, Vol. 46,No. 6, 2009, pp. 1093-1104.
    [23]Kairouz, K. A., and Rahai, H. R.,” Turbulent junction flow with an upstream ribbed surface,” International Journal of Heat and Fluid Flow, Vol. 26, No. 5, 2005, pp. 771-779.
    [24]Seal, C. V., and Smith, C. R.,” The control of turbulent end-wall boundary layers using surface suction,” Experiments in Fluids, Vol. 27, No. 6, 1997, pp. 484-496.

    無法下載圖示 全文公開日期 2018/06/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE