簡易檢索 / 詳目顯示

研究生: 張美智
Mei-Chih Chang
論文名稱: 以資訊理論為基礎來評估桁架結構 系統的可施工性
Information theory based approach for constructability assessment in truss structural systems
指導教授: 施宣光
Shen-Guan Shih
口試委員: 吳家麟
Ja-Ling Wu
謝尚賢
Shang-Hsien Hsieh
楊亦東
I-Tung Yang
鮑興國
Hsing-Kuo Pao
學位類別: 博士
Doctor
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 94
中文關鍵詞: Shannon 資訊理論量化評估可施工性馬爾可夫鏈蒙特卡羅方法對稱群理論
外文關鍵詞: quantification of constructability, information theory, symmetry group theory, Markov chain, Monte Carlo method
相關次數: 點閱:200下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在建築工程的設計階段,可施工性的重要性經常被低估,往往並未得到足 夠的關注。本文提出了一種桁架結構系統施工之複雜度的定量測量方法,可用於 早期設計階段的可施工性之定量指標。施工是被認為是設計建築物形式的建築師 和實施施工任務的營建廠之間的合作承諾。單獨的設計形式不能提供足夠的信息 來指定實際施工的過程。需要足夠的施工訊息,才能使得施工者可以確定如何實 際構建的形式。本研究的目的是建立一個基於 Shannon 資訊理論基礎來評估施 工所需資訊量的模型。這些資訊量是基於建築設計圖之拓撲圖中其組裝的不確定 性以及建築師和施工者在設計施工之資訊模型的共享知識庫。在本論文中,不確 定性的熵被顯示為量化可施工性複雜度的評估指標。馬爾可夫鏈,蒙特卡羅方法 和對稱群理論也用於我們的模型中,以分析不同程度的組構方式的可施工性。本 研究的範圍目前集中在分析桁架結構系統的可施工性,並對六種不同類型的桁架 結構系統的進行評估。並在柬埔寨的一個校舍建設計畫中,評估了五種設計方案, 並以本理論模型確定設計案的可施工性。結果顯示,本理論方法可以幫助建築師 設計容易施工的桁架結構系統,並探索可施工性的重要設計原則


The importance of constructability is often understated in the design phase of a construction project. Issues regarding constructability often do not receive sufficient attention until it is too late for design changes. This thesis proposes a quantitative measure of the complexity of construction in truss structural system design that can be used as an index of constructability in the aspect of standardization and repetition elements at early design stages. Construction can be regarded as a co-operative undertaking among architects, who specify the form of a building, and builders, who implement construction tasks. The designed form alone does not provide enough information to specify feasible processes for actual building. Sufficient fabrication information is needed so that fabricators can be completely certain concerning how to actually build the form. The goal of this thesis is to establish a model for estimating the amount of information needed for construction based on Shannon’s information theory. This amount of information is based on uncertainty concerning assembly construction in the topological graph of the designed form, and the knowledge base shared by the designer and the builder in a design-build communication model. In this thesis, the entropy of uncertainty is shown as being quantified as an index of constructability assessment for the attributes of standardization and repetition. Markov chain, Monte Carlo method and symmetry-group theories are also used in our model to analyze different levels of assembly. The scope of this thesis is currently focused on analyzing the constructability of truss structure systems. The quantitative measure of the complexity of construction is demonstrated for six different types of truss structural systems. The five alternative designs are assessed for a schoolhouse project in Cambodia requiring easy construction, identified by our theoretical model. The results show that our methodology can help architects to design easily constructed truss structural systems and explore important design principles for improving constructability.

CHAPTER 1 INTRODUCTION 1. 1 MOTIVATION & THESIS OBJECTIVES 1. 2 THESIS ORGANIZATION CHAPTER 2 BACKGROUND & LITERATURE REVIEW 2. 1 BUILDABILITY/CONSTRUCTABILITY 2.2 APPLICATION OF INFORMATION THEORY CHAPTER 3 DESIGN-BUILD COMMUNICATION MODEL 3.1 DESIGN-BUILD COMMUNICATION SYSTEM 3.2 SOURCE OF INFORMATION 3.2.1 MARKOV PROCESSES 3.2.2 MONTE CARLO APPROXIMATION 3.3 UNCERTAINTY OF INFORMATION 3.4 QUANTIFICATION 3.4.1 FIRST-ORDER QUANTIFICATION 3.4.2 HIGH-ORDER QUANTIFICATION CHAPTER 4 DEMONSTRATION 4.1 SIX BASIC FLAT TRUSS STRUCTURAL SYSTEMS 4.1.1 FIRST-ORDER ENTROPY 4.1.2 HIGHER-ORDER ENTROPY 4.1.3 IMPLEMENTATION 4.2 CAMBODIAN SCHOOLHOUSE PROJECT 4.2.1 FIRST-ORDER AND HIGHER-ORDER ENTROPY 4.2.2 IMPLEMENTATION CHAPTER 5 APPLICATION 5.1 GRAPHIC STATICS 5.2 DEMONSTRATION CHAPTER 6 CONCLUSION 6.1 CONCLUSION 6.2 FUTURE WORKS BIBLIOGRAPHY APPENDIX A DETAIL CALCULATION APPENDIX B DETAIL IMPLEMENTATION

[1] Patrick T. I. Lam, Franky W. H. Wong, Albert P. C. Chan, Contributions of designers to improving buildability and constructability, Design Studies 27 (4) (2006) pp.457-479, http://dx.doi.org/10.1016/j.destud.2005.10.003.
[2] A. Griffith, A.C. Sidewell, Development of constructability concepts, principles and practices, Engineering, Construction and Architectural Management 4 (4) (1997) pp.295 - 310, http://dx.doi.org/10.1046/j.1365-232X.1997.t01-1-00003.x.
[3] Franky W.H. Wong, Patrick T.I. Lam, Edwin H.W. Chan, L.Y. Shen, A study of measures to improve constructability, International Journal of Quality & Reliability Management 24 (6) (2007) pp.586-601, http://dx.doi.org/10.1108/02656710710757781.
[4] Building and Construction Authority (2005), Code of Practice on Buildability Design, Building and Construction Authority, Singapore, 2005, ISBN 9971-88-745-2.
[5] O.O. Ugwu, C.J. Anumba, A. Thorpe, The development of cognitive models for constructability assessment in steel frame structures, Advances in Engineering Software 35 (2004) pp.191-203, http://dx.doi.org/10.1016/j.advengsoft.2004.02.001.
[6] S. V. Barai, R. S. Nair, Neuro-fuzzy models for constructability analysis, Journal of Information Technology in Construction 9 (2004) pp.65-73, http://www.itcon.org/2004/4.
[7] W.-D. Yu, M. J. Skibniewskib, Quantitative constructability analysis with a neuro-fuzzy knowledge-based multi-criterion decision support system, Automation in Construction 8 (5) (1999) pp.553-565, http://dx.doi.org/10.1016/S0926-5805(98)00105-8.
[8] W. Hijazi, S. Alkass, T. Zayed, Constructability Assessment Using BIM/4D CAD Simulation Model, AACE International Transactions (2009) pp.BIM.04.01-BIM.04.14
[9] M. K. Tauriainen, J. A. Puttonen, A. J. Saari, The assessment of constructability: BIM cases, Journal of Information Technology in Construction 20 (2015) pp.51-67, http://www.itcon.org/2015/4.
[10] C. Wang, H.-W. Shen, Information Theory in Scientific Visualization, Entropy (2011) pp.254-273, http://dx.doi.org/10.3390/e13010254.
[11] I. Viola, M. Sbert, Importance-Driven Focus of Attention, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12 (5) (2006) pp.933-938, http://dx.doi.org/10.1109/TVCG.2006.152.
[12] P.-P. Va ́Zquezz, M. Feixasz, M. Sbertz, W. Heidrich, Viewpoint Selection using Viewpoint Entropy, in: Bernd Girod Thomas Ertl, Heinrich Niemann, Hans-Peter Seidel (Ed.), VMV '01 Proceedings of the Vision Modeling and Visualization Conference 2001, Aka GmbH ©2001, Stuttgart, Germany, November 21 - 23, 2001, pp. 273-280
[13] S. Takahashi, I. Fujishiro, Y. Takeshima, T. Nishita, A feature-driven approach to locating optimal viewpoints for volume visualization, in: Matthew O. Ward John T. Stasko (Ed.), IEEE Symposium on Information Visualization 2005, Minneapolis, MN, United States, October 23-28 2005, pp. 495-502, http://dx.doi.org/10.1109/VISUAL.2005.1532834.
[14] W.-Y. Pan, M.-C. Su, H.-T. Wu, M.-C. Lin, I-T. Tsai, C.-K. Sun, Multiscale Entropy Analysis of Heart Rate Variability for Assessing the Severity of Sleep Disordered Breathing, Entropy 17
(2015) pp.231-243, http://dx.doi.org/10.3390/e17010231.
[15] N. Rashevsky, Life, information theory, and topology, The bulletin of mathematical biophysics 17 (3) (1955) pp.229-235, http://dx.doi.org/10.1007/BF02477860.
[16] C. E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal 27 (1948) pp.379-423, 623-656, http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.
[17] University of Texas at Austin. Construction Industry Institute, RS3-1 - Constructability: A Primer, Technical report of Construction Industry Institute, University of Texas, 1986
[18] H. Shin, H. Watanabe, M. Kunishima, A new methodology for evaluating a new construction technology from the viewpoint of constructability, Proceeding of the 47th Conference of Japanese Society of Civil Engineers, JSCE, Japan1989,
[19] Construction Industry Research and Information Association, Buildability: An assessment, CIRIA, London, 1983, ISBN 0860172023.
[20] Cii Constructability Task Force Construction Industry Institute Australia, The Development of Constructability Principles for the Australian Construction Industry, Construction Industry Institute, Australia, 1996, ISBN 1876189002.
[21] M. Dehmer, Information Theory of Networks, Symmetry 3 (2011) pp.767-779, http://dx.doi.org/10.3390/sym3040767.
[22] D. H. Rouvray, D. Bonchev, Complexity in chemistry : introduction and fundamentals, CRC Press, London, 2003, ISBN 978041528791.
[23] W.-K. Ching, X. Huang, M. K. Ng, T.-K. Siu, Markov Chains Models, Algorithms and Applications, Springer USA, New York, Heidelberg, Dordrecht, London, 2013, ISBN 978-0-387-29335-6.
[24] I. Manno, Introduction to the Monte-Carlo method by István Manno, Akadémiai Kiadó, Hungary, 1999, ISBN 963-05-7615-5.
[25] M. Li, P. Vitányi, An introduction to Kolmogorov complexity and its applications, Springer, London, 1997, ISBN 0-387-94868-6.
[26] E. Trucco, A note on the information content of graph, Bulletin of Mathematical Biophyics 18 (2) (1956) pp.129-135, http://dx.doi.org/10.1007/BF02477836.
[27] W. Miller, Symmetry Groups and their Application, Academic Press, New York and London, 1972, ISBN 0-12-497460-0.
[28] N. J. Mitra, M. Pauly, M. Wand, D. Ceylan, Symmetry in 3D Geometry: Extraction and Applications, Computer Graphics
Forum 32 (6) (2012) pp.1-23, http://dx.doi.org/10.1111/cgf.12010.
[29] P. Nelson, M. Coffin, K. Copeland, Introductory Statistics for Engineering Experimentation, Elsevier Academic Press, Amsterdam, 2003, ISBN 9780080491653.
[30] J.F. Kenney, Mathematics of statistics: 2nd Edition, Van Nostrand Company, Inc., New York, 1947, ISBN 9953505497.
[31] L. Cremona, Le Figure Reciproche nella Statica Grafica, Tipografia di Giuseppe Bernardoni, Milano, 1872
[32] C. Culmann, Die Graphische Statik, 2., neubearbeite Auflage ed. ed., Meyer & Zeller, Zürich, 1875
[33] J. C. Maxwell, On reciprocal figures and diagrams of forces, The Scientific Papers of James Clerk Maxwell, Vol. XXIV, Cambridge University Press, Cambridge, 2009, ISBN 9781108012256.
[34] L. L. Beghini, J. Carrion, A. Beghini, A. Mazurek, W. F. Baker, Structural optimization using graphic statics, Structural and Multidisciplinary Optimization 49 (3) (2014) pp.351-366, http://dx.doi.org/10.1007/s00158-013-1002-x.
[35] Simon Greenwold, Active Statics, 2003
[36] T. V. Mele, P. Block, eQUILIBRIUM, 2009-2012
[37] C. Tang, X. Sun, A. Gomes, J. Wallner, H. Pottmann, Form-finding with Polyhedral Meshes Made Simple, ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2014 33 (4) (2014) pp.Article No.7, http://dx.doi.org/10.1145/2601097.2601213.
[38] E. Michael, D. Mario, K. Martin, M. Niloy, P. Helmut, P. Mark, Case Studies in Cost-Optimized Paneling of Architectural Freeform Surfaces, Advances in Architectural Geometry 2010, Springer, Wien, 2010, pp. 49-72, ISBN 3-7091-0308-8, 978-3-7091-0308-1, 978-3-7091-0309-8 (ebook)
[39] A. Golovinskiy, J. Podolak, T. A. Funkhouser, Symmetry-Aware Mesh Processing, in: Edwin R. Hancock, Martin, Ralph R., Sabin, Malcolm A. (Eds.) (Ed.), Proceedings of the 13th IMA International Conference on Mathematics of Surfaces XIII, York, UK, 07-09 Sep.,2009, pp. 170-188, http://dx.doi.org/10.1007/978-3-642-03596-8_10.
[40] Leonidas John Guibas Niloy J. Mitra, Mark Pauly, Symmetrization, ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2014 26 (3) (2007) pp.Article No.63, http://dx.doi.org/10.1145/1275808.1276456.
[41] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, T.
Funkhouser, A planar-reflective symmetry transform for 3D shapes, ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2006 (2006) pp.549-559 http://dx.doi.org/10.1145/1179352.1141923.
[42] M. Eigensatz, M. Kilian, A. Schiftner, N. J. Mitra, H. Pottmann, M. Pauly, Paneling architectural freeform surfaces, ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2010 29 (4) (2010) pp.1-10, http://dx.doi.org/10.1145/1778765.1778782.


QR CODE