簡易檢索 / 詳目顯示

研究生: 鄭文瑜
Wen-yu Cheng
論文名稱: 接近多輸入多輸出系統容量之馬可夫鏈蒙地卡羅軟性檢測技術
Markov Chain Monte Carlo SISO Detector for Approaching MIMO Channel Capacity
指導教授: 王煥宗
Huan-Chun Wang
口試委員: 溫志宏
none
李志堅
none
黃德振
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 61
中文關鍵詞: MIMO遞迴式偵測與解碼接收器通道容量MCMC軟式輸入軟式輸出MMSE-SICEXIT chartcurve fitting接近通道容量錯誤更正碼
外文關鍵詞: MIMO, iterative detection and decoding receiver, channel capacity, MCMC SISO detector, MMSE-SIC, EXIT chart, curve fitting, near-capacity coding
相關次數: 點閱:651下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在研究利用Markov Chain Monte Carlo (MCMC) soft-input-soft-output (SISO) detector技術來接近MIMO 通道容量。在使用由EXIT chart與curve fitting技術所設計出能接近MIMO 通道容量的情況下,若使用足夠多的candidate list個數,MCMC SISO detector具有接近於MIMO通道容量的能力,其所需的candidate list個數的大小與天線的佈局有關。在傳送天線數與接收天線數相同的時候,所需的candidate list個數約等於傳送天線數。然而,在傳送天線數大於接收天線數的時候,所需的candidate list個數約等於傳送天線數的10倍,此時所需的複雜度將遠過傳統的MMSE-SIC SISO detector。在相同的複雜度的情況下,MCMC與MMSE-SIC SISO detector相比也會因不同的天線佈局有所不同。在傳送天線數與接收天線數相同的時候,MCMC SISO detector比MMSE-SIC SISO detector能提供更高的容量。在傳送天線數大於接收天線數的時候,MCMC SISO detector反而會比MMSE-SIC SISO detector要來的差。


    This thesis studies the conventional Markov chain Monte Carlo (MCMC) soft-in-soft-out (SISO) detector. Using the near-capacity coding designed by curve fitting technique, simulation shows MCMC SISO detector with enough candidate list number can offer the capacity approaching the MIMO channel capacity. The candidate list number requirement for approaching channel capacity depends on different antenna configurations. If transmitter antenna number and receiver antenna number are the same, the candidate list number requirement is equal to transmitter antenna number. However, if transmitter antenna number is larger than the receiver antenna number, the candidate list number requirement is about 10 times of transmitter antenna number. In this case, the complexity of MCMC SISO detector is much larger than that of the MMSE-SIC SISO detector. The capacity comparison of MCMC and MMSE-SIC SISO detector with the same complexity also depends on different antenna configuration. If transmitter antenna number and receiver antenna number are the same, MCMC offers higher capacity than MMSE-SIC SISO detector. If transmitter antenna number is larger than the receiver antenna number, MCMC SISO detector is inferior to MMSE-SIC SISO detector.

    第一章 緒論 第二章 系統架構與通道容量 2.1 系統架構 2.2 通道容量與最高傳送速度 第三章 Markov Chain Monte Carlo SISO Detector 3.1 Markov Chain Monte Carlo SISO Detector演算法 3.2 MCMC SISO detector之複雜度 3.2.1 產生candidate list所需複雜度 3.2.2 計算LLR值所需複雜度 第四章 模擬結果分析 4.1 MCMC Detector中平行數Q和遞迴數I的選擇 4.2 MCMC之收斂性 4.3 比較不同SISO detector之最高傳輸速度上界與容量 4.3.1 不同SISO detector之最高傳輸速度上界比較 4.3.2 不同SISO detector之容量比較 4.4 MCMC與其他SISO detector之複雜度的比較 第五章 結論 附錄A SISO detector 的容量計算 附錄B 使用Candidate list計算LLR方法 附錄C 證明由 求得 參考文獻

    [1] 3GPP, TR36.913 v.8.0.0 :Requirements for Further Advancements for E-UTRA.
    [2] IEEE 802.16 WG., “IEEE 802.16m System Description [Draft]”, IEEE 802.16m-08/003r6, December 2008.
    [3] A. Paulraj, R. Nabar, D. Gore, Introduction to Space-Time Wireless Communication , Cambridge Univ. Press,Cambridge, U.K., 2003.
    [4] S. ten Brink and G. Kramer, “Design of repeat-accumulate codes for iterative detection and decoding”, IEEE Trans. Signal Processing, vol. 51, no. 11, Nov. 2003.
    [5] G. Yue and X. Wang, “Optimization of irregular repeat accumulate codes for MIMO systems with iterative receivers”, IEEE Trans. Commun., vol. 4, no. 6, pp. 2843-2854, Nov. 2005.
    [6] B. M. Hochwald and S. ten Brink, “Achieving Near-Capacity on a Multiple-Antenna Channel,” IEEE Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
    [7] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, pp. 585-595, Nov. 1999.
    [8] W.R Gilks, S. Richardson, D.J. Spiegelhalter, Markov Chain Monte Carlo in Pratice , CHAPMAN & HALL, Cambridge, U.K., 1996.
    [9] B. Farhang-Boroujeny, H. Zhu, and Z. Shi, “Markov chain Monte Carlo algorithms for CDMA and MIMO communication systems” IEEE Trans. Signal. Process., vol. 54, no. 5, pp. 1896-1909, May 2006.
    [10] R. R. Chen, R. Peng, A. Ashikhmin, B. Farhang-Boroujeny, “ Approaching MIMO Capacity Using Bitwise Markov Chain Monte Carlo Detection”, IEEE Trans. on Communications, vol. 58, NO. 2, Feb. 2010
    [11] X. Mao, P. Amini, and B. Farhang-Boroujeny, “Markov Chain Monte Carlo MIMO Detection Methods for High Signal-to-Noise Ratio Regimes ” , in Proc. IEEE Globecom ‘07, pp. 3979-3983, Nov.2007
    [12] R. R. Chen, R. Peng, and B. Farhang-Boroujeny, “Markov Chain Monte Carlo: Applications to MIMO detection and channel equalization” in Proc. Information Theory and Applications Workshop 2009, pp. 44-49, Feb.2009
    [13] R. Peng, K. H. Teo, J. Zhang and R. R. Chen,“ Low-complexity hybrid QRD-MCMC MIMO detection”,in Proc.IEEE GLOBECOM 2008.,pp. 1-5 ,2008
    [14] K. Xiao, M. Su, S. Guo, “ MMSE Soft-Interference-Cancellation Aided MCMC Detection for MIMO Systems”, in Proc. IE&EM '09,pp 2107-2110,2009
    [15] A. Kumar, S. Chandrasekaran, A. Chockalingam, and B. Sundar Rajan, “Near-Optimal Large-MIMO Detection Using Randomized MCMC and Randomized Search Algorithms”, in Proc. IEEE ICC 2011, pp. 1-5.
    [16] S. Akoum, R. Peng , R. R. Chen, B. Farhang-Boroujeny, “ Markov Chain Monte Carlo Detection Methods for High SNR Regimes”, in Proc. IEEE ICC 2009, pp. 1-5,2009
    [17] J. Besag, “Spatial Interaction and the Statistical Analysis of Lattice Systems”, Journal of the Royal Statistical Society. Series B (Methodological), vol. 36, No. 2. 1974, pp.192-236.
    [18] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection”, IEEE Trans. Commun., vol. 52, no. 4, pp. 670-678, April 2004.
    [19] J. Wu and Y. R. Zheng, “Low complexity soft-input soft-output decision feedback equalization,” IEEE J. Sel. Areas Commun., vol. 26, no. 2, pp. 281–289, Feb. 2008
    [20] Zhan Guo, Nilsson, P., “ Algorithm and implementation of the K-best sphere decoding for MIMO detection,” IEEE J. Sel. Areas Commun. vol. 24 no. 3 , pp.491 – 503. Mar. 2006.
    [21] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for rank-deficient MIMO systems,” IEEE Comm. Letter, vol. 9, no. 5, pp.423-425, May 2005.
    [22] X. Wang and H.V. Poor, “Iterative (turbo) soft interference cancellation and decoding for coded CDMA,” IEEE Trans. Commun., vol. 47, no. 7, pp. 1046-1061, July 1999.
    [23] J. Choi, “A correlation based analysis for approximate MAP detectors and iterative receivers,”IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1764-1773, May 2007.
    [24] J. W. Choi., A. C. Singer, J. Lee, and N, I. Cho, “Improved linear soft-in soft-out detection via soft feedback successive interference cancellation”, IEEE Trans. Comm., vol. 58, no. 3, pp. 1-12, Mar. 2010.
    [25] J. P. Kermoal, L. Schumacher, K. Ingemann, P. E. Mogensen, and F. Frederiken, “A stochastic MIMO radio channel model with experimental validation,” IEEE J. Sel. Areas Commun., vol. 20, no. 6, pp. 1211–1224, Aug. 2002.
    [26] D. Gesbert, H. Bolcskei, D. A. Gore, and A. J. Paulraj, “Outdoor MIMO wireless channels: Models and performance prediction,” IEEE Trans. Comm., vol. 50, no. 12, pp. 1926-1934, Dec. 2002.
    [27] 3GPP, TR 25.996 V9.0.0: 3rd generation partnership project: Technical specification group radio access network spatial channel model for multiple input multiple output (MIMO) simulations.
    [28] WiMAX Forum Mobile RCT- Wave 2 Amendment
    [29] N. H. Tran, T. Le-Ngoc, and T. Mastumoto, and Ha H. Nguyen, “ A simple near-capacity scheme over MISO channels,” in Proc. IEEE BROADNET 2009, pp. 1-7.

    QR CODE