簡易檢索 / 詳目顯示

研究生: 呂宇晴
Yu-Ching Lu
論文名稱: 初始進料與全回流切換於萃取蒸餾塔啟動程序之研究
Study on Initial Charge and Reflux Switch Point for Extractive Distillation Startup Policies
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 錢義隆
I-Lung Chien
陳誠亮
Cheng-Liang Chen
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 109
中文關鍵詞: 萃取蒸餾啟動動態模擬異丙醇脫水程序
外文關鍵詞: extractive distillation, startup, dynamic simulation, Dehydration of Isopropyl Alcohol Process
相關次數: 點閱:276下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蒸餾塔啟動為化學製程中極為複雜之動態操作之一,其程序包含有複雜的熱傳以及質傳並且擁有大範圍的操作條件。啟動至到達穩定操作條件所經過的時間與消耗的能源並不具有生產力,因此降低啟動過程的時間和能耗是相當重要的操作。本研究將探討初始進料與全回流切換時間點於連續萃取蒸餾啟動程序設計的影響,萃取蒸餾的特點為必須將夾帶劑連續的加入蒸餾塔,以此改變共沸混合物間的相對揮發度,由此可知夾帶劑與共沸混合物間的比例為啟動程序操作的重要變數。
    本研究在萃取蒸餾塔的夾帶劑連續進料時間點以及共沸混合物進料時間點設計分別以回流罐溫度以及凝液罐溫度進行決定,並且以三種不同的初始進料策略進行啟動:分別為僅含共沸混合物、僅含夾帶劑、以及同時含夾帶劑與共沸混合物,而在夾帶劑回收塔則考慮兩個不同的全回流切換時機點:回流罐溫度以及凝液罐溫度,因此總共有六種情況在本研究中呈現。
    結果顯示,連續萃取蒸餾啟動的最佳策略為初始進料僅注入夾帶劑於凝液罐以及夾帶劑回收塔選擇以凝液罐溫度做為全回流切換點。此策略可避免凝液罐液位的劇烈變化,與初始進料僅注入共沸混合物策略相比可節省18%的能耗以及17%的浪費量,並且擁有最短的啟動完成時間。


    In this study, the initial charge and reflux switch point in the extractive distillation is investigated. The start-up operation of an extractive distillation is different from the conventional distillation. The entrainer must be continuously fed into the column to change the relative volatility of the azeotrope mixture. Therefore, keeping the proportion of the azeotrope mixture and the entrainer in the extractive column is the main purpose in the start-up operation.
    The feeding time operation of entrainer and azeotrope is required to be considered here. The entrainer is fed when the temperature of drum reaches the nominal value. The azeotrope mixture is fed based on the sump temperature condition. In this work, three kind of the initial charge in the extractive distillation: azeotrope mixture only, the azeotrope mixture and entrainer and entrainer only. And two different selections of the switch point in the recycle column; drum and sump, are investigated. So, in total, there are six scenarios implemented in this study.
    The result shows that the best strategy is the initial charge contained entrainer only and the selection of reflux switch point based on sump temperature in the recovery column. It can avoid the dramatic change in the sump of extractive column. The result compared with the initial charge contained azeotrope mixture only shows 17% improvement in the off-spec product and 18% improvement in the reboiler duty.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.2.1 萃取蒸餾 3 1.2.2 蒸餾塔啟動 8 1.3 研究動機與目的 13 1.4 組織章節 14 第2章 連續萃取蒸餾程序 15 2.1 前言 15 2.2 程序描述 16 2.2.1 異丙醇與水分離的萃取蒸餾穩態程序 16 2.2.2 異丙醇與水分離的萃取蒸餾常態控制架構 20 第3章 萃取蒸餾啟動策略 23 3.1 前言 23 3.2 控制架構 24 3.2.1 初始啟動控制架構 24 3.2.2 穩定操作控制架構 25 3.1 啟動控制方法 29 3.1.1 夾帶劑進料控制方法 30 3.1.2 塔底產物排放方法 31 3.1.3 共沸混合物進料控制方法 31 3.1.4 回流與塔頂產物切換方法 32 3.1.5 再沸器加熱方法 34 第4章 不同啟動策略的探討與模擬 35 4.1 啟動策略 35 4.2 啟動模擬結果 37 4.2.1 啟動策略ICAO-TB之模擬結果 37 4.2.2 啟動策略ICAO-TD之模擬結果 41 4.2.3 啟動策略ICAE-TB之模擬結果 45 4.2.4 啟動策略ICAE-TD之模擬結果 49 4.2.5 啟動策略ICEO-TB之模擬結果 53 4.2.6 啟動策略ICEO-TD之模擬結果 57 4.2.7 夾帶劑啟動回收塔之現象改善 61 4.3 模擬結果之探討 69 4.3.1 萃取蒸餾塔 70 4.3.2 夾帶劑回收塔 78 4.3.3 萃取蒸餾程序啟動策略結果比較 80 4.4 啟動策略驗證程序 81 4.4.1 丙酮與甲醇分離程序 81 4.4.2 丙酮與甲醇分離的萃取蒸餾啟動策略 85 4.4.3 丙酮與甲醇分離啟動結果 90 第5章 結論 93 未來展望 95 參考文獻 96

    中華民國經濟部能源局2015年能源查核年報“http://emis.erl.itri.org.tw/_upload/_admin/ecpaper/324/file/2015%E8%A3%BD%E9%80%A0%E6%A5%AD%E8%83%BD%E6%BA%90%E6%9F%A5%E6%A0%B8%E5%B9%B4%E5%A0%B1.pdf”
    陳姿伶,“應用模擬退火法進行普通蒸餾程序最適啟動研究”,碩士論文,國立台灣科技大學,民國一百零三年七月
    洪有信,“醋酸甲酯與醋酸丁酯反應蒸餾程序最適啟動策略”,碩士論文,國立台灣科技大學,民國一百零四年十一月
    Industrial Development Report (2016). The Role of Technology and Innovation inInclusive and Sustainable Industrial Development.
    Arifin, S., & Chien, I. L. (2008). Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Industrial & Engineering Chemistry Research, 47(3), 790-803.
    Benz, S. J., & Scenna, N. J. (2002). An extensive analysis on the start-up of a simple distillation column with multiple steady states. Canadian Journal of Chemical Engineering, 80(5), 865-881.
    Chen, B., Lei, Z., Li, Q., & Li, C. (2005). Application of CAMD in separating hydrocarbons by extractive distillation. AIChE Journal, 51(12), 3114-3121.

    Foucher, E. R., Doherty, M. F., & Malone, M. F. (1991). Automatic screening of entrainers for homogeneous azeotropic distillation. Industrial & Engineering Chemistry Research, 30(4), 760-772.
    Gmehling, J., & Mollman, C. (1998). Synthesis of distillation processes using thermodynamic models and the Dortmund data bank. Industrial & Engineering Chemistry Research, 37(8), 3112-3123.
    Klein, E., Itigin, A., Raisch, J., & Kienle, A. (2000). Automatic generation of switching start-up schemes for chemical processes. In P. Sauro (Ed.), Computer Aided Chemical Engineering (Vol. Volume 8, pp. 619-624).
    Lang, P., Modla, G., Kotai, B., Lelkes, Z., & Moszkowicz, P. (2000). Homoazeotropic distillation of maximum azeotropes in a batch rectifier with continuous entrainer feeding II. Rigorous simulation results. Computers & Chemical Engineering, 24(2-7), 1429-1435.
    Lang, P., Yatim, H., Moszkowicz, P., & Otterbein, M. (1994). Batch extractive distillation under constant reflux ratio. Computers & Chemical Engineering, 18(11), 1057-1069.
    Laroche, L., Andersen, H. W., Morari, M., & Bekiaris, N. (1991). Homogeneous azeotropic distillation: Comparing entrainers. The Canadian Journal of Chemical Engineering, 69(6), 1302-1319.
    Lei, Z. G., Li, C. Y., & Chen, B. H. (2003). Extractive distillation: A review. Separation and Purification Reviews, 32(2), 121-213.

    Lelkes, Z., Lang, P., Moszkowicz, P., Benadda, B., & Otterbein, M. (1998). Batch extractive distillation. Chemical Engineering Science, 53(7), 1331-1348.
    Lladosa, E., Montón, J. B., & Burguet, M. (2011). Separation of di-n-propyl ether and n-propyl alcohol by extractive distillation and pressure-swing distillation: Computer simulation and economic optimization. Chemical Engineering and Processing: Process Intensification, 50(11), 1266-1274.
    Luyben, W. L. (2008). Comparison of Extractive Distillation and Pressure-Swing Distillation for Acetone−Methanol Separation. Industrial & Engineering Chemistry Research, 47(8), 2696-2707.
    Reepmeyer, F., Repke, J. U., & Wozny, G. (2003). Analysis of the start-up process for reactive distillation. Chemical Engineering & Technology, 26(1), 81-86.
    Rodríguez-Donis, I., Gerbaud, V., & Joulia, X. (2001). Entrainer Selection Rules for the Separation of Azeotropic and Close-Boiling-Temperature Mixtures by Homogeneous Batch Distillation Process. Industrial & Engineering Chemistry Research, 40(12), 2729-2741.
    Ruiz, C. A., Cameron, I. T., & Gani, R. (1988). A generalized dynamic model for distillation columns—III. Study of startup operations. Computers & Chemical Engineering, 12(1), 1-14.
    Scenna, N. J., Benz, S. J., Franceseoni, J. A., & Rodriguez, N. H. (2004). Start-up of homogeneous azeotropic distillation columns with multiple steady states. Industrial & Engineering Chemistry Research, 43(2), 553-565.
    Scenna, N. J., Benz, S. J., Rodriguez, N. H., & Klaric, J. I. (2005). Startup of homogeneous azeotropic distillation sequences with multiple steady states. Industrial & Engineering Chemistry Research, 44(24), 9208-9220.
    Wang, L., Li, P., Wozny, G., & Wang, S. Q. (2003). A startup model for simulation of batch distillation starting from a cold state. Computers & Chemical Engineering, 27(10), 1485-1497.
    Woinaroschy, A. (2008). Time-optimal control of startup distillation columns by iterative dynamic programming. Industrial & Engineering Chemistry Research, 47(12), 4158-4169.
    Yao, J. Y., Lin, S. Y., & Chien, I. L. (2007). Operation and control of batch extractive distillation for the separation of mixtures with minimum-boiling azeotrope. Journal of the Chinese Institute of Chemical Engineers, 38(5-6), 371-383.
    Yatim, H., Moszkowicz, P., Otterbein, M., & Lang, P. (1993). Dynamic simulation of a batch extractive distillation process. Computers & Chemical Engineering, 17, S57-S62.

    無法下載圖示 全文公開日期 2022/08/14 (校內網路)
    全文公開日期 2027/08/14 (校外網路)
    全文公開日期 2027/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE