簡易檢索 / 詳目顯示

研究生: 陳冠儒
Guan-Ru Chen
論文名稱: 使用普魯士蘭去除水中銫元素
Cesium Removal from Tap Water Using Prussian blue
指導教授: 李篤中
Duu-Jong Lee
口試委員: 劉志成
Jhy-Chern Liu
李懷特
Christopher George Whiteley
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 49
中文關鍵詞: 去汙普魯士藍飲用水處理
外文關鍵詞: Cesium, Prussian blue, decontamination, drinking water treatment
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用非放射性Cs-133模擬水中放射性銫元素的去除。使用之吸附劑為普魯士藍(PB),由日方(AIST)提供含有普魯士藍之不織布及顆粒兩種形式吸附劑。杯瓶實驗顯示,普魯士藍去除銫之吸附過程為一熵驅動程序。而由於很強的離子交換機制,已被普魯士藍吸附的銫不會因外界溫度擾動而脫附到水中。在管柱型濾材測試中,普魯士藍對於銫有絕佳的移除效果,在足夠的接觸時間下,銫之去除率可達99%,此外大規格管柱設計也可由此試驗中獲得。水廠快濾池除銫之模擬結果顯示,10公分厚之顆粒型普魯士藍吸附層可移除99%銫,且水頭損失非常小(0.015 m)。此結果顯示,在水廠中使用顆粒型普魯士藍吸附劑進行大規模除銫是可行的。傳統水廠處理程序除銫方法為混凝沉澱法,使用此方法會產生大量含有放射性銫之汙泥,如何妥善處理這些放射性汙泥也是一個問題。與混凝沉澱法相比較,使用普魯士藍吸附銫有更好的去除效果。普魯士藍可以將大量的銫離子濃縮至體積很小的吸附材中,提供一個安全有效的處理方式,在飲用水大規模除銫處理方面,普魯士藍是一個新選擇。

關鍵字:銫,去汙,普魯士藍,飲用水處理


Non-radioactive Cs-133 was used in this study to simulate the decontamination of radioactive cesium in water. Prussian blue (PB) from Japan (AIST) were used as adsorbents, there were PB non-woven and PB granules, two types. The batch test results showed the adsorption of cesium by PB was an entropy driven process. And because of the ion-exchange mechanism of PB, cesium won’t be released to water by the temperature disturbance. PB has a good elimination effect and selectivity of cesium in the column filter tests, the cesium removal achieved 99% at a sufficient contact time, and the filters designed for using in large scale treatment were obtained also. Because of the good decontamination performance of cesium by using PB, there was a simulation of rapid filtration. The result showed a high cesium removal greater than 99% and a very small head loss (0.015 m) of PB granule bed (10 cm). It is indicated that it was possible to use PB for decontamination of cesium in the drinking water treatment plant. The main means in water treatment plant to remove cesium is by coagulation-flocculation-sedimentation, it would produce a large amount of waste sludge contained radioactive cesium, how to solve those decontaminated sludge is another problem. Compared to coagulation-flocculation-sedimentation method, PB could adsorb cesium more effectively and safely stored in a small volume. So in the case of radioactive cesium treatment, PB adsorbents were strongly recommended.

TABLE OF CONTENTS ABSTRACT I 摘要 II ACKNOWLEDGEMENTS I TABLE OF CONTENTS II LIST OF FIGURES IV LIST OF TABLES VII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 RESEARCH GOALS 1 CHAPTER 2 LITERATURE REVIEW 2 2.1 NUCLEAR SAFETY AND NUCLEAR DISASTER EMERGENCY TREATMENT 2 2.2 THE TREATMENTS TO REMOVE RADIOACTIVE SUBSTANCE IN WATER 2 2.2.1 Adsorption 3 2.2.2.1 Zeolite 3 2.2.2.2 Metallic-oxide/ Minerals 3 2.2.2.3 Carbon nano-materials 4 2.2.2.4 Bio-sorbents 4 2.2.2 Ion exchange 5 2.2.3 Film filtration 5 2.2.4 Coagulation-flocculation-sedimentation treatment 6 2.3 RADIOACTIVE CESIUM-137 6 2.4 CESIUM REMOVAL IN WATER TREATMENT PLANT 8 2.5 PRUSSIAN BLUE (PB) 9 2.5.1 Introduction of PB 10 2.5.2 PB nanoparticles 11 2.5.3 Ion-exchange 12 2.5.4 Decontamination of radioactive cesium by using PB 12 CHAPTER 3 MATERIALS AND METHODS 13 3.1 CHEMICALS AND EXPERIMENTAL MACHINES 13 3.2 EXPERIMENTAL PROCESSES 14 3.2.1 Batch test of PB Non-woven and Granule 14 3.2.1.1 Thermodynamics and adsorption isotherm 14 3.2.1.2 Temperature shift effect 14 3.2.1.3 The pH and competition ions effect 15 3.2.1.4 NaClO effect 15 3.2.2 PB filter test 15 3.2.3 Rapid filtration basin simulation 16 CHAPTER 4 RESULTS AND DISCUSSION 18 4.1 BATCH TEST OF NON-WOVEN AND GRANULE 18 4.1.1 Adsorption equilibrium curve 18 4.1.2 Langmuir adsorption isotherm 20 4.1.3 Determination of thermodynamic parameters 21 4.1.4 Temperature shift effect 22 4.1.5 pH and competition ions effect 24 4.1.6 NaClO effect 27 4.2 THE PB FILTER TEST 29 4.2.1 Non-woven column filter type I 29 4.2.2 Non-woven column filter type II 33 4.2.3 Granule column filter 34 4.3 RAPID FILTRATION BASIN SIMULATION 38 4.4 CONCLUSION 43 REFERENCE 45 APPENDIX 48

1. Zhang, H., et al., Investigation of radionuclide Ni-63(II) sorption on ZSM-5 zeolite. Journal of Radioanalytical and Nuclear Chemistry, 2010. 286(1): p. 249-258.
2. D Shao, Q.F., J Li et al. , Microporous and Mesoporous Materials. 2009. 123(1-3): p. 1-9.
3. Zhang, L.P., et al., Impact of environmental conditions on the sorption behavior of radionuclide Co-60(II) on MnO2. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288(2): p. 537-546.
4. Ambashta, R.D., et al., Magnetic carrier for radionuclide removal from aqueous wastes: Parameters investigated in the development of nanoscale magnetite based carbamoyl methyl phosphine oxide. Separation Science and Technology, 2006. 41(5): p. 925-942.
5. Saxena, S., M. Prasad, and S.F. D'Souza, Radionuclide sorption onto low-cost mineral adsorbent. Industrial & Engineering Chemistry Research, 2006. 45(26): p. 9122-9128.
6. Wang, M.M., X.Q. Tao, and X.P. Song, Effect of pH, ionic strength and temperature on sorption characteristics of Th(IV) on oxidized multiwalled carbon nanotubes. Journal of Radioanalytical and Nuclear Chemistry, 2011. 288(3): p. 859-865.
7. Fugetsu, B., et al., Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environmental Science & Technology, 2004. 38(24): p. 6890-6896.
8. Yang, S., et al., Adsorption of Ni(II) on oxidized multi-walled carbon nanotubes: Effect of contact time, pH, foreign ions and PAA. Journal of Hazardous Materials, 2009. 166(1): p. 109-116.
9. Lu, S.S., et al., Adsorption and desorption of radionuclide europium(III) on multiwalled carbon nanotubes studied by batch techniques. Journal of Radioanalytical and Nuclear Chemistry, 2011. 287(3): p. 893-898.
10. Krishna, M.V.B., et al., Performance of immobilized moss in the removal of Cs-137 and Sr-90 from actual low-level radioactive waste solutions. Journal of Radioanalytical and Nuclear Chemistry, 2004. 261(3): p. 551-557.
11. Krishna, M.V.B., et al., Removal of Cs-137 and Sr-90 from actual low level radioactive waste solutions using moss as a phyto-sorbent. Separation and Purification Technology, 2004. 38(2): p. 149-161.
12. Dahiya, S., R.M. Tripathi, and A.G. Hegde, Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arca shell biomass. Journal of Hazardous Materials, 2008. 150(2): p. 376-386.
13. Eroglu, H., et al., An environmentally friendly process; Adsorption of radionuclide Tl-201 on fibrous waste tea. Journal of Hazardous Materials, 2009. 163(2-3): p. 607-617.
14. Yapici, S., H. Eroglu, and E. Varoglu, Bio-sorption of Tl-201 radionuclide on olive pomace. Applied Radiation and Isotopes, 2011. 69(3): p. 614-622.
15. Raouf, M.W.A., Potassium hexacyanocobalt ferrate and ammonium molybdophosphate sorption bags for the removal of Cs-137 from aqueous solutions and a simulated waste. Journal of Chemical Technology and Biotechnology, 2004. 79(1): p. 22-29.
16. Saberi, R., et al., Adsorption characteristic of Cs-137 from aqueous solution using PAN-based sodium titanosilicate composite. Journal of Radioanalytical and Nuclear Chemistry, 2010. 284(2): p. 461-469.
17. Zakrzewska-Trznadel, G. and M. Harasimowicz, Application of ceramic membranes for hazardous wastes processing: pilot plant experiments with radioactive solutions. Desalination, 2004. 162(1-3): p. 191-199.
18. Arnal, J.M., et al., Treatment of Cs-137 liquid wastes by reverse osmosis - Part I. Preliminary tests. Desalination, 2003. 154(1): p. 27-33.
19. Dambies, L., et al., Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration. Journal of Hazardous Materials, 2010. 178(1–3): p. 988-993.
20. 任俊樹、牟濤、楊勝亞、趙玉傑及羅順全, 絮凝沉澱處理含鹽量較高的鈾、鈽低放廢水. 核化學與放射化學, 2008. 30(4).
21. Kosaka, K., et al., Removal of radioactive iodine and cesium in water purification processes after an explosion at a nuclear power plant due to the Great East Japan Earthquake. Water Research, 2012. 46(14): p. 4397-4404.
22. Lindsay, W.L., Chemical equilibria in soils. 1979: John Wiley and Sons Ltd.
23. Redman, H., et al., Toxicity of ^137\rmCsCl in the Beagle. Early Biological Effects. Radiation Research, 1972. 50(3): p. 629-648.
24. Gafvert, T., C. Ellmark, and E. Holm, Removal of radionuclides at a waterworks. Journal of Environmental Radioactivity, 2002. 63(2): p. 105-115.
25. Goossens, R., et al., Removal of the Typical Isotopes of the Chernobyl Fallout by Conventional Water-Treatment. Water Research, 1989. 23(6): p. 693-697.
26. Brown, J., et al., Handbook for Assessing the Impact of a Radiological Incident on Levels of Radioactivity in Drinking Water and Risks to Operatives at Water Treatment Works: Supporting Scientlfic Report. 2008: Health Protection Agency.
27. (IAEA), I.A.E.A., The use of Prussian Blue to reduce radiocaesium contamination of milk and meat produced on territories affected by the Chernobyl accident. 1997.
28. Favaro, M., et al., The palette of the Macchia Italian artist Giovanni Fattori in the second half of the XIXth century. Journal of Cultural Heritage, 2010. 11(3): p. 265-278.
29. H. J. BUSER, D.S., W. PETTER, and A. LUDI, The Crystal Structure of Prussian Blue. 1977.
30. Gotoh, A., et al., Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues. Nanotechnology, 2007. 18(34).
31. Vipin, A.K., B. Hu, and B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. Journal of Hazardous Materials, 2013. 258–259(0): p. 93-101.
32. Akiko Kitajima, H.T., Nobutsugu Minami, Kazunori Yoshino, Tohru Kawamoto, Efficient Cesium Adsorbent Using Prussian Blue Nanoparticles Immobilized on Cotton Matrices. Chemistry Letters, 2012. 41: p. 1473-1474.
33. Parajuli, D., et al., Dealing with the Aftermath of Fukushima Daiichi Nuclear Accident: Decontamination of Radioactive Cesium Enriched Ash. Environmental Science & Technology, 2013. 47(8): p. 3800-3806.
34. Hu, B.Y., et al., Prussian blue caged in spongiform adsorbents using diatomite and carbon nanotubes for elimination of cesium. Journal of Hazardous Materials, 2012. 217: p. 85-91.
35. Yakout, S.M. and E. Elsherif, Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons. Carbon - Science and Technology, 2010. 3(1): p. 144-153.
36. Vipin, A.K., B. Hu, and B. Fugetsu, Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. J Hazard Mater, 2013. 258-259: p. 93-101.
37. Ikeshoji, T. and T. Iwasaki, In situ x-ray diffraction measurement of Prussian blue modified electrode. Inorganic Chemistry, 1988. 27(7): p. 1123-1124.
38. Omura, A., et al., Electrochemical control of the elution property of Prussian blue nanoparticle thin films: mechanism and applications. Physical Chemistry Chemical Physics, 2009. 11(44): p. 10500-10505.
39. DeLongchamp, D.M. and P.T. Hammond, High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Advanced Functional Materials, 2004. 14(3): p. 224-232.
40. Gail, E., et al., Cyano Compounds, Inorganic, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
41. Nielsen, P., et al., Bioavailability of Iron and Cyanide from Oral Potassium Ferric Hexacyanoferrate(Ii) in Humans. Archives of Toxicology, 1990. 64(5): p. 420-422.

無法下載圖示 全文公開日期 2018/07/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE