簡易檢索 / 詳目顯示

研究生: 劉奕均
Yi-Jyun Liu
論文名稱: 整合式電驅動系統之散熱設計之數值與實驗研究
Numerical and Experimental Study on Thermal Management of Integrated Electric Power Transmission System
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
楊旭光
Shiuh-Kuang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 184
中文關鍵詞: 整合式電驅動系統感應電動機控制器階梯狀並聯式交錯式Pin Fin熱流場模擬
外文關鍵詞: Integrated electric power system, Control board, Offset-array pin fins, Parallel arrangement of coolant duct system
相關次數: 點閱:189下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文探討電動機車之整合式電驅動系統的散熱設計,此電驅動系統將控制器與電動機結合以節省空間,因其發熱密度高而形成莫大挑戰與本研究之課題。在此先藉有限元素電磁分析軟體JMAG-Designer,求解三相交流感應電動機之能量損失作為實際發熱量,結果顯示在忽略機械雜散損下,電動機以額定功率與最大功率運轉時,定子鐵損分別為60.92 W與79.14 W,且定子銅損為226.85 W及1,052.70 W,而轉子銅損則為79.56 W及248.36 W。接著依理論推算散熱排之對流熱傳係數,並設定厚度0.04 mm空氣層作為定子鐵心與水冷套之接觸熱阻,再藉計算流體力學軟體Fluent針對原型電驅動系統進行熱流場模擬;將計算結果與實測數據相互驗證發現,當電驅動系統以額定功率穩定運轉時,最高溫區域為轉子鐵心與導體且其均溫為89.28 ℃。而以最大功率運行30秒後,溫度最高者為馬達控制器中的MOSFETs,其均溫為88.72 ℃且最高達100.60 ℃;也觀察到運轉15秒以後,其溫升趨勢開始轉為線性上升,因此如何有效控制、減緩MOSFETs之溫升幅度,即成為本電驅動系統之主要探討目標。
在檢視相關流場後,將控制器水冷板之散熱鰭片改為交錯式之平行四邊形Pin Fins,使流體均勻分布而能充分與鰭片接觸,並可達到抑制迴流產生之效果,進而提高鋁基板之整體散熱效率;同時將感應電動機水冷套由原先的串聯式設計,改為階梯狀並聯式之散熱水道,使流動阻抗降低並成功地提高整體水流量。結合上述兩項改善方案後,模擬結果顯示MOSFETs於電驅動系統以最大功率運轉時,其平均溫度得以降低7.2度至81.53 ℃,而最高溫度則大幅下降11度至89.69 ℃。總而言之,本文成功地結合數值與實驗兩工具設計出能有效控制MOSFETs溫升之散熱模組,亦透過數值與實測之結果比較驗證,確立所建構的數值模型的建構與模擬方法具有良好可信度,可供日後探討電動機散熱設計之參考應用依據。


This work focuses on the thermal management of an electric power system for motorcycle, which integrates the electric motor, transmission, and control units intimately to possess the compact and versatile features for fitting into multiple applications. However, the summed heat amount generated by motor and control unit forms a challenging thermal task and becomes the topic of this thesis. Here, a systematic design scheme of the thermal module is established by considering the concerns on both electromagnetic and thermal aspects. Firstly, commercial software JMAG-Designer is used to simulate the electromagnetic field for providing information to calculate core and copper losses in a rational manner. As a result, the summation of core and copper losses are 367.3W and 1,380.2W for the cruising and accelerating operations, respectively. These quantities with the dissipation add-ons from control unit are the total heat energy needed to dispel by the water-cooling thermal module. Next, CFD codes Ansys Fluent is utilized to check the steady and the transient thermal/flow distributions inside the original power system. The steady simulation illustrates that the highest temperature is found in the core with an average temperature of 89.3 ℃. Also, for the unsteady calculations, the maximum temperature 100.6 ℃ is recorded in the MOSFETS with an average temperature 88.7 ℃ after a 30-second accelerating operation. Clearly, the temperature rise and distribution of MOSFETS become the main improving target. Moreover, this CFD model is validated by means of a consistent trend between the experimental measurement and the numerical result.
Subsequently, the water-cooling heat fins in the control unit is changed from the parallel plate fins to the offset-array pin fins for reducing the flow recirculation and increasing the effective heat dissipation area. Also, the parallel arrangement of coolant ducts for the motor unit is adopted to replace the original in-series duct layout to decrease flow resistance of the entire cooling duct for enlarging the operating flow rate. Accordingly, CFD calculations illustrate that this new thermal design with the above modifications yields the impressive 7.2℃ and 10.9℃ temperature decreases on the average and the highest temperature on MOSFETs after the 30-sec maximum-power operation. In summary, the analysis tool proposed here has successfully generated an efficient thermal solution to control the motor core and MOSFETs temperatures below their safety limits. Also, the accomplishment of this research offers a rigorous and systematic scheme to design a water-cooling thermal module for the thermal management of an integrated electric power transmission system used in motorcycle.

摘要 I Abstract III 誌謝 V 目錄 VI 圖索引 XI 表索引 XVII 符號索引 XVIII 第一章 緒論 1 1.1 前言 1 1.2 國內電動機車產業之發展 2 1.3 文獻回顧 10 1.3.1 水冷裝置之相關研究 10 1.3.2 電動機散熱之相關研究 11 1.4 研究動機與方法 12 第二章 整合式電驅動系統之簡介 16 2.1 整合式電驅動系統之組成 16 2.1.1 三相交流感應電機 18 2.1.2 馬達控制器 20 2.1.3 減速機構 21 2.1.4 冷卻系統 24 2.2 三相交流感應電機之設計與性能分析 25 2.2.1 感應機之規格設計暨材料選用 26 2.2.2 額定轉矩7.2 N-m 34 2.2.3 最大轉矩22 N-m 38 第三章 物理模式與理論分析 43 3.1 熱傳遞原理 43 3.1.1 熱傳導 44 3.1.2 熱對流 45 3.2 熱阻定義 46 3.3 流動能量損失 47 3.3.1 主要損失 48 3.3.2 次要損失 49 第四章 數值方法與邊界條件 52 4.1 統御方程式 52 4.2 k-ε紊流模型 54 4.3 數值計算方法 56 4.3.1 離散化方法 56 4.3.2 數值求解方法與流程 58 4.4 邊界條件 59 第五章 整合式電驅動系統之溫度量測 62 5.1 實驗設備 62 5.2 實驗方法 70 5.3 實驗結果 74 第六章 整合式電驅動系統之模擬分析 80 6.1 電驅動系統之發熱量與邊界條件 80 6.1.1 感應電動機之發熱量 81 6.1.2 控制器中高功率晶片之發熱量 84 6.1.3 水泵浦之數值模型簡化 86 6.1.4 散熱排之數值模型簡化 86 6.2 整合式電驅動系統之數值模型 91 6.2.1 馬達控制器與水冷板 92 6.2.2 感應電動機及水冷套 96 6.2.3 量測平台之馬達支架 101 6.3 電驅動系統之模擬分析與實驗驗證 102 6.3.1 實驗配置之模擬分析 102 6.3.2 加入接觸熱阻之模擬分析 109 6.3.3 電驅動系統本體之模擬分析 112 6.4 控制器水冷板之模擬分析 119 6.5 感應機水冷套之模擬分析 123 第七章 整合式電驅動系統之散熱改良設計 128 7.1 控制器水冷板之改良設計 128 7.1.1 直列式矩形Pin Fins 131 7.1.2 交錯式矩形Pin Fins 134 7.1.3 交錯式平行四邊形Pin Fins 137 7.2 感應電動機水冷套之改良設計 140 7.2.1 並聯式散熱水道 140 7.2.1 階梯狀並聯式散熱水道 145 7.3 整合式電驅動系統之改良設計分析 146 7.3.1 改良模型選用 148 7.3.2 穩態分析 150 7.3.3 暫態分析 153 第八章 結論與建議 157 8.1 結論 157 8.2 建議 159 參考文獻 160

[1] 潘富生,“電動機車與燃油機車生命週期盤查分析”,國立臺北大學資源管理研究所碩士論文,2002年。
[2] 廖世宏,“電動機車特殊安全規範簡介”,車輛研測資訊,82期,第2-7頁,2011年6月。
[3] E.M. Sparrow, P.W. Chevelier, and J. P. Abraham, “The Design of Cold Plates for the Thermal Management of Electronic Equipment,” Heat Transfer Engineering, Vol. 27, No. 7, pp. 6-16, February 2007.
[4] S.G. Kandlikar and C.N. Hayner Ⅱ, “Liquid Cooled Cold Plates for Industiral High-Power Electronic Devices-Thermal Design and Manufacturing Considerations,” Heat Transfer Engineering, Vol. 30, No. 12, pp. 918-930, 2009.
[5] 鄭又嘉,“永磁式同步發電機散熱設計之數值與實驗整合研究”,國立臺灣科技大學機械工程系碩士論文,2011年。
[6] 王俊淇與林博煦,“電動車動力系統之整合式熱管理策略”,中國機械工程學會第二十九屆全國學術研討會,國立中山大學,2012年12月。
[7] 李俊穎、朱浩緯、張毓倫與許華倚,“三項永磁同步馬達熱分析之量測與模擬比較”,中國機械工程學會第三十九屆全國學術研討會,國立聯合大學,2022年12月。
[8] 系見和信著,許溢适編譯,“實用電動機設計手冊”,文笙書局,1996年。
[9] KHK,“齒輪技術資料”。
[10] R. Wang, X. Fan, D. Li, and R. Qu, “Comparison of Two Hollow-shaft Liquid Cooling Methods for High Speed Permanent Magnet Synchronous Machines,” IEEE Energy Conversion Congress and Exposition, pp. 3511-3517, October 2020.
[11] Y.A. Çengel and A. Chajar, “Heat and Mass Transfer: Fundamentals and Applications,” 5th Ed, McGraw-Hill Education, 2015.
[12] D.F. Young, B.R. Munson, T.H. Okiishi, and W. W. Huebsch, “Introduction to Fluid Mechanics,” 5th Ed, John Wiley & Sons, 2012.
[13] B.E. Launder and D.B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
[14] J.F. Tullius, T.K. Tullius, Y. Bayazitoglu, “Optimization of Short Micro Pin Fins in Minichannels,” International Journal of Heat and Mass Transfer, Vol. 55, No. 15-16, pp. 3921-3932, July 2012.
[15] 蕭鈞毓,“高性能永磁式同步風力發電機之設計”,國立臺灣科技大學電機工程系博士論文,2012年。
[16] 唐乃光,“馬達銅轉子與銅鋁複合轉子製程”,機械工業雜誌,416期,第4-5頁,2017年。
[17] O.N. Sara, “Performance Analysis of Rectangular Ducts with Staggered Square Pin Fins,” Energy Conversion and Management, Vol. 44, No. 11, pp. 1787-1803, July 2003.
[18] G. O. Brown, “The History of the Darcy-Weisbach Equation for Pipe Flow Resistance,” Environmental and Water Resources History, Vol. 38, pp. 34-43, 2002.
[19] D. Brkić, “Review of Explicit Approximations to the Colebrook Relation for Flow Friction,” Journal of Petroleum Science and Engineering, Vol. 77, No. 1, pp. 34-48, 2011.

無法下載圖示 全文公開日期 2026/02/02 (校內網路)
全文公開日期 2029/02/02 (校外網路)
全文公開日期 2029/02/02 (國家圖書館:臺灣博碩士論文系統)
QR CODE