簡易檢索 / 詳目顯示

研究生: 洪詩晴
SHIH-CHING HUNG
論文名稱: 高強度鋼筋於低矮剪力牆往復載重行為研究
Cyclic Behaviors of RC Low-Rise Shear Wall with High Strength Reinforcement
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
歐昱辰
Yu-Chen Ou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 容量高強度鋼筋鋼筋混凝土剪力強度剪力牆低矮牆
外文關鍵詞: capacity, high-strength reinforcement, reinforced concrete, shear strength, shear wall, squat wall
相關次數: 點閱:1154下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究旨在探討使用高強度鋼筋於低矮型鋼筋混凝土剪力牆的可行性,以及規範對低矮型鋼筋混凝土剪力牆之特殊邊界區圍束箍筋要求之有效性,本論文共測試五組低矮型鋼筋混凝土剪力牆,試體斷面積一致為8 in. "×" 80 in. (200 mm "×" 2000 mm),試體以單曲率單向往復載重方式測試,其中剪力跨距與試體長度的比值均為1。本研究使用的高強度鋼筋為SD785,其標稱降伏強度約為115 ksi (805 MPa)。實驗結果顯示使用高強度鋼筋之試體,其強度及位移能力與符合ACI 318-11規範之普通強度鋼筋(Grade 60)試體相當。根據規範ACI 318-11所設計之試體,無法避免剪力主控的破壞模式。試體的極限變形能力和剪應力強度成反比;當剪應力需求上升,變形能力則會下降。此外,邊界特殊構材的箍筋間距對高剪力需求試體的極限剪力強度及極限變形能力的影響有限。


This study investigates the potential of using high-strength reinforcement and effectiveness of confinement required in the special boundary element by ACI 318-11 in reinforced concrete (RC) squat shear wall subjected to cyclic displacement reversals. A total of five specimens are tested. All specimens have an identical cross section of 8 x 80 in. (200 x 2000 mm) and a shear span-to-length ratio of 1.0. The selected high-strength steel has specified yield strength of 115 ksi (805 MPa). Test results indicate that specimens using high-strength steel exhibit comparable strength and deformation capacities as specimens using conventional Grade 60 steel. Shear capacities based on the code provisions cannot prevent the shear wall specimens from shear-governed failure modes. Specimen ultimate deformation decreases as the induced shear stress level increases. Additionally, strength and deformation capacity are not greatly influenced by the reduced amount of confinement in the special boundary region.

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 研究目的及方法 4 1.4 研究內容架構 5 第二章 文獻回顧 6 2.1 低矮剪力牆的破壞行為 6 2.2 剪力強度預測模型 9 2.3 ACI設計規範(2011)規定的特殊邊界構材 13 第三章 試體規劃 15 3.1 試體設計概述 15 3.2 試體尺寸與配筋 18 3.3 試驗配置 28 3.4 試驗測試程序 31 3.5 試驗量測裝置 34 第四章 試驗結果 41 4.1 材料試驗結果 41 4.2 試體測試結果 45 4.3 載重與位移行為曲線 72 4.4 試體裂縫 78 4.5 試體強度 82 4.6 變形 85 4.7 鋼筋應變 91 第五章 結論 105 參考文獻 107 符號說明 110

ACI Committee 318, 2011, “Building Code Requirements for Structural Concrete and Commentary (ACI 318-11),” American Concrete Institute, Detroit, Michigan, 503 pp.

ASTM A370-12, 2012, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshohocken, PA, 48 pp.

Athanasopoulou, A., and Parra-Montesinos, G., 2013, “Experimental Study on the Seismic Behavior of High-Performance Fiber-Reinforced Concrete Low-Rise Walls,” ACI Structural Journal, V. 110, No. 5, Sept.-Oct., pp. 767-778.

Aktan, A. E., and Bertero, V. V., 1985, “RC Structural Walls: Seismic Design for Shear.”, Journal of Structural Engineering, Vol. 111, No. 8, Aug., pp. 1775-1791.

Barda, F., Hanson; J. M.; and Corley, W. G., 1977, “Shear Strength of Low-Rise Walls with Boundary Elements,” ACI Special Publications, Reinforced Concrete in Seismic Zones, SP-53-8, pp.149-202.

Fintel, M., 1991, “Shearwalls - An Answer for Seismic Resistance?,” Concrete International, V. 13, No. 7, Jul., pp. 48-53.

Gulec, C. K.; Whittaker, A. S.; and Stojadinovic, B., 2008, “Shear Strength of Squat Rectangular Reinforced Concrete Walls,” ACI Structural Journal, V. 105, No. 4, Jul-Aug, pp. 488-497.

Hsu, T. T. C. and Mo, Y. L., 1985, “Softening of Concrete in Low-Rise Shearwalls.” ACI Structural Journal, V. 82, No. 6, Nov.-Dec., pp. 883-889.

Mau, S. and Hsu, T. T. C., 1986, “Shear Design and Analysis of Low-Rise Shearwalls.”, ACI Structural Journal, V. 83, No. 2, Mar.-Apr., pp. 306-315.

Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., 2011, “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling Beams: A Guide for Practicing Engineers,” NEHRP Seismic Design Technical Brief No. 6, National Institute of Standards and Technology, U.S. Department of Commerce, NIST GCR 11-917-11, 37 pp.

Paulay, T.; Priestley, M. J. N.; and Synge, A. J., 1982 “Ductility in Earthquake Resisting Squat Shearwalls,” ACI Journal, V. 79, No. 4, Jul.-Aug., pp. 257-269.

Salonikios, N. T., Kappos, J. A., Tegos, A. I. and Penelis, G. G., 1999, “Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test Results.”, ACI Structural Journal, V. 96, No. 4, Jul.-Aug., pp. 649-660.

TCI, 2014, “鋼筋混凝土用鋼筋Steel bars for Concrete Reinforcement – SD550W、SD685、SD785,” 新高強度鋼筋混凝土技術委員會報告, Sept., 10 pp.

Thomsen, J. H., Wallace, J. W. (1995), “Displacement-based design of RC structural walls: an experimental investigation of walls with rectangular and T-shaped cross sections,” CU/CEE-95/06, Structural Engineering Research Lab., Department of Civil and Environmental Engineering, Clarkson University, Postdam, New York, Jun.

Wallace, J.W. and Orakcal, K., 2002, “ACI 318-99 Provisions for Seismic Design of Structural Walls.”, ACI Structural Journal, V. 99, No. 4, Jul.-Aug., pp. 499-508.

Wallace, J. W., and Moehle, J. P, 1992, “Ductility and Detailing Requirements of Bearing Wall Buildings.”, Journal of Structural Engineering, V. 118, No. 6, Jun., pp. 1625-1644.

Wood, S. L., 1990, “Shear Strength of Low-Rise Reinforced Concrete Walls.” ACI Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 99-107.

Wood, S. L., 1991, “Performance of Reinforced Concrete Buildings during the 1985 Chile Earthquake: Implications for the Design of Structural Walls,” Earthquake Spectra, EERI, V. 7, No. 4, pp. 607-638.

QR CODE