簡易檢索 / 詳目顯示

研究生: 珊蒂
Diah - Susanti
論文名稱: Electrochemical Capacitors of Anhydrous and Hydrous RuO2 Using Two Configurations of Parallel-Plate and Interdigital Electrodes
Electrochemical Capacitors of Anhydrous and Hydrous RuO2 Using Two Configurations of Parallel-Plate and Interdigital Electrodes
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 許貫中
none
吳乃立
none
盧信沖
none
黃鶯聲
none
黃炳照
none
葉文昌
none
戴龑
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 150
外文關鍵詞: anhydrous RuO2, hydrous RuO2, parallel-plate, interdigital
相關次數: 點閱:171下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


Structural electrodes of anhydrous RuO2 vertical nanorods encased in hydrous RuO2 have been prepared via chemical vapor deposition (CVD) followed by electrochemical deposition and arranged in parallel-plate configurations. The composite structures are studied using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The capacitive properties are measured using cyclic voltammetry and impedance spectroscopy. In a miniaturized configuration, the CVD grown structure provides a connecting backbone of electron paths and open channels for ion migration to facilitate the charge delivery or acceptance from the electrodeposited hydrous RuO2 of high pseudocapacitance. The sample of thermally reduced nanorods encased in RuO2•0.46H2O (RuRuO2NR-H2) exhibits a total capacitance of 侧520 Fg-1 (870 mFcm-2) at 5 mVs-1, superior to that of the RuO2•0.46H2O coated as-grown nanorods (RuO2NR-H) 侧260 Fg-1 (300 mFcm-2). Despite the twice charge storage capability, RuRuO2NR-H2 demonstrates a similar capacitor response time as RuO2NR-H, because of its low internal resistance. Two important features of RuRuO2NR-H2 are identified, including an open structure for hydrous RuO2 accommodation and a fast electron path for charge delivery and retrieval.
Besides the parallel-plate configuration, the capacitor electrodes are configured in interdigital single-chip capacitors via photolithography and reactive sputtering techniques. Briefly, the anhydrous RuO2 nanorods are grown on finger-like patterned of TiO2/Ti/Au/SiO2/Si substrates with various finger spacing of d = 20, 30, and 40 μm. The hydrous RuO2 is electrochemically deposited on the anhydrous RuO2 samples to increase the specific capacitance. Scanning electron microscopy, transmission electron microscopy, and X-ray diffraction are used to study the structures of the composites. The capacitive properties are measured using cyclic voltammetry, charging-discharging and impedance spectroscopy analysis. The specific capacitances of d=20 μm are larger than those of d=30 μm and those of d=30 μm are larger than those of d=40 μm. The mass-specific capacitance of d=20 μm is 105.5 F.g-1, that of d=30 μm is 77 F.g-1 and that of d=40 μm is 68.4 F.g-1 measured by cyclic voltammetry at 2 mV.s-1 sweep rate. Besides, the sample of d=20 μm also performs the fastest capacitive response among the other two samples. Although the specific capacitances of the finger-like electrodes are smaller than those of the parallel-plate electrodes, this design offers practicality in integrating the electrode in a single chip and fast capacitive response.

Abstract ………………………………………………………………………….i Contents …………………………………………………………………………ii List of Figures ………………………………………………………………….. iii List of Tables …………………………………………………………………. xiii Chapter 1 Introduction………………………………………………………….. 1 Chapter 2 Literature Review …………………………………………………… 6 2.1. Ruthenium metal: structure and properties ………………………...6 2.2. Anhydrous ruthenium dioxide (RuO2): structure and properties …..7 2.3. Hydrous RuO2: structure and properties …………………………..12 2.4. Methods in synthesizing anhydrous RuO2 nanocrystals …………. 17 2.4.1. Chemical Vapor Deposition (CVD)………………………... 18 2.4.2. Physical Vapor Deposition (PVD) ………………………….21 2.5. Methods in synthesizing hydrous RuO2 ………………………….. 26 2.5.1. Galvanostatic mode …………………………………………26 2.5.2. Cyclic Voltammetry (CV) deposition ………………………27 2.5.3. Pulse deposition …………………………………………….28 2.6. The application of RuO2 as electrochemical capacitor …………....30 2.6.1. Introduction to capacitor ……………………………………30 2.6.2. Electrochemical capacitor …………………………………..34 2.6.2.1. Electrochemical double-layer capacitor (EDLC) …..36 2.6.2.2. Pseudocapacitor …………………………………….39 2.6.3. Electrolyte …………………………………………………..41 2.6.3.1. Organic electrolyte ……………………………….. 41 2.6.3.2. Aqueous electrolyte ………………………………. 42 2.6.4. Application of Electrochemical Capacitors…………………43 2.7. Electrochemical Impedance Spectroscopy (EIS) ………………….44 2.7.1. Introduction to EIS ………………………………………….44 2.7.2. Physical electrochemistry and equivalent circuit elements….47 2.7.2.1. Electrolyte resistance ……………………………...47 2.7.2.2. Double layer capacitance ………………………….47 2.7.2.3. Pseudocapacitance …………………………………47 2.7.2.4. Constant Phase Element …………………………...48 2.7.2.5. Diffusion 2.7.3. Extracting Model Parameters from Data …………………...50 Chapter 3 Experimental Details 3.1. Hybrid EC in parallel plate configuration …………………………51 3.1.1. Raw Materials and Chemicals ………………………………51 3.1.2. Instruments ………………………………………………….52 3.1.3. Experimental Procedures ………………………………….. 54 3.1.3.1. Substrate cleaning and preparation ……………….. 56 3.1.3.2. RuO2NR growth via MOCVD ……………………. 56 3.1.3.3. Partial reduction of RuO2NR into Ru metals ………57 3.1.3.4. PCB preparation ……………………………………58 3.1.3.5. Samples packaging in PCB ………………………...59 3.1.3.6. Electrochemical deposition of hydrous RuO2 ……..60 3.1.3.7. Capacitive property measurement …………………61 3.1.3.8. Mass measurement ………………………………...62 3.1.3.9. Thermogravimetric Analysis (TGA) ...……………62 3.2. Hybrid EC in single chip using finger-like electrodes configuration ……………………………………………………...63 3.2.1. Raw Materials and Chemicals 3.2.2. Instruments ……………………………………………….. 65 3.2.3. Experimental procedures …………………………………..65 3.2.3.1. Substrate cleaning and preparation ……………….68 3.2.3.2. Patterning and sputtering ………………………….68 3.2.3.3. Sample packaging…………………………………73 3.2.3.4. Electrochemical deposition ……………………….74 3.2.3.5. Capacitive property measurement ………………...76 3.2.3.6. Mass measurement ………………………………..77 Chapter 4 Result and Discussion ………………………………………………..78 4.1. Hybrid EC in parallel plate configuration …………………………79 4.1.1. RuO2 active mass …………………………………………...79 4.1.2. Thermogravimetric Analysis ………………………………. 81 4.1.3. Morphology study …………………………………………. 82 4.1.4. X-ray Diffraction (XRD) ……………………………………86 4.1.5. X-ray Photoelectron Spectroscopy ………………………….87 4.1.6. Cyclic voltammograms and analysis ………………………..90 4.1.7. Impedance spectra and analysis …………………………….95 4.2. Hybrid EC in interdigital (finger-like) configuration …………….108 4.2.1. RuO2 active mass ………………………………………….108 4.2.2. Morphology study …………………………………………109 4.2.3. X-ray Diffraction (XRD) ………………………………….114 4.2.4. Cyclic voltammograms and analysis ………………………115 4.2.5. Charging-discharging analysis …………………………….118 4.2.6. Impedance spectra and analysis …………………………...124 Chapter 5 Conclusions …………………………………………………………135 Reference ………………………………………………………………………136

1.J. A. Rard, Chem. Rev. 85, 1 (1985).
2.M. Vukovic, Electrochim. Acta 34, 287 (1989).
3.D. Worsley and A. Mills, J. Molec. Cat. 94, 71 (1994).
4.M. Blouin and D. Guay, J. Electrochem. Soc. 144, 573 (1997).
5.D. R. Rolison, P. L. Hagans, K. E. Swider, and. J. W. Long, Langmuir 15, 774 (1999).
6.V. V. Panić, A. B. Dekanski, T. R. Vidaković, V. B. Mišković – Stanković, B. Ž. Javanović, and B. Ž. Nikolić, J. Solid State Electrochem. 9, 43 (2005).
7.S. H. Huang, D. Susanti, D. S. Tsai, Y. C. Hsieh, Y. S. Huang, and W. H. Chung, Langmuir 24, 2785 (2008).
8.C. S. Hsieh, D. S. Tsai, R. S. Chen, and Y. S. Huang, Appl. Phys. Lett. 85, 3860 (2004).
9.C. S. Hsieh, G. Wang, D. S. Tsai, R. S. Chen, and Y. S. Huang, Nanotechnology 16, 1885, (2005).
10.A. Korotcov, Y. S. Huang, T. S. Tsai, D. S. Tsai, and K. K. Tiong, Nanotechnology 17, 3149 (2006).
11.T. E. Lister, Y. V. Tolmachev, Y. Chu, W. G. Cullen, H. You, R. Yonco, and Z. Nagy, J. Electroanal. Chem. 554 – 555, 71 (2006).
12.J. W. Long, R. M. Stroud, K. E. Swider – Lyons, and D. R. Rolison, J. Phys. Chem. B 104, 9772 (2000).
13.S. H. Jordanov, P. Paunović, O. Popovski, A. Dimitrov, and D. Slavkov, Bull. Chem. Technol. Macedonia 23, 101 (2004).
14.S. Trasatti and G. Buzzanca, J. Electroanal. Chem. 29, App. 1 (1971).
15.G. W. Jang, E. W. Tsai, and K. Rajeshwar, J. Electroanal. Chem. 263, 383 (1989)
16.J. P. Zheng and T. R Jow, J. Electrochem. Soc. 142, L6 (1995).
17.J. P. Zheng, P. J. Cygan, and T. R. Jow, J. Electrochem. Soc. 142, 2699 (1995).
18.I. Paseka, Appl. Cat. A: General 207, 257 (2001).
19.L. Nougaret, P. Combette, R. Arinero, J. Podlecki, and F. Pascal – Delannoy, Thin Solid Films 515, 3971 (2007).
20.A. Mills and S. K. Lee, Platinum Metal Rev. 47, 2 (2003).
21.K. E. Swider – Lyons, C. T. Love, and D. R. Rolison, J. Electrochem. Soc. 152, C158 (2005).
22.Y. F. Ke, D. S. Tsai, and Y. S. Huang, J. Mater. Chem. 15, 2122 (2005).
23.C. C. Hu, K. H. Chang, M. C. Lin, and Y. T. Wu, Nano Lett. 6, 2690 (2006).
24.K. B. Oldham and J. C. Myland, Fundamentals of Electrochemical Science, Academic Press, Inc., California, (1994).
25.Y. U. Jeong and A. Manthiram, Electrochem. Solid – State Lett. 3, 205 (2000).
26.H. Kim and B. N. Popov, J. Power Sources 104, 56 (2002).
27.W. Sugimoto, T. Kizaki, K. Yokoshima, Y. Murakami, and Y. Takasu, Electrochim. Acta 49, 313 (2004).
28.C. C. Hu, W. C. Chen, and K. H. Chang, J. Electrochem. Soc. 151, A281 (2004).
29.Wang Y. G. and Zhang. X. G., Electrochim. Acta 49, 1957 (2004).
30.Y. A. Ahn, M. Y. Song, S. M. Jo, C. R. Park, and D. Y. Kim, Nanotechnology 17, 2865 (2006).
31.N. L. Wu, S. L. Kuo, and M. H. Lee, J. Power Sources 104, 62 (2002).
32.H. K. Kim, S. H. Choi, Y. S. Yoon, S. Y. Chang, Y. W. Ok, and T. Y. Seong, Thin Solid Films 475, 54 (2005).
33.B. E. Conway, Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications, Kluwer Academic, New York (1999).
34.W. Sugimoto, H. Iwata, K. Yokoshima, Y. Murakami, and Y. Takasu, J. Phys. Chem. B 109, 7330 (2005).
35. http://www.sc.doe.gov/bes/reports/abstracts.html#ES
36.http://environmentalchemistry.com/yogi/periodic/Ru.html
37.Y. S. Huang, H. L. Park, and F. H. Pollak, Mat. Res. Bull. 17, 1305 (1982).
38.A. R. West, Solid State Chemistry and its Application, Wiley, New York, page 207 – 210 (1984).
39.W. D. Ryden, A. W. Lawson, and C. C. Sartain, Phys. Rev. B 1(4), 1494 (1970).
40.Y. Matsui, M. Hiratani, and S. Kimura, Jpn. J. Appl. Phys. 39, 256 (2000).
41.G. Battaglin, V. Rigato, S. Zandolin, A. Benedettin, S. Ferro, L. Nanni, and A. De Battisti, Chem. Matter. 16, 946 (2004).
42.A. Korotcov, H. P. Hsu, Y. S. Huang, D. S. Tsai, and K. K. Tiong, Crystal Growth and Design 6, 2501 (2006).
43.A. Korotcov, H. P. Hsu, Y. S. Huang, D. S. Tsai, and K. K. Tiong, J. Alloys and Compounds 442, 310 (2007).
44.Q. Wang, W. L. Gladfelter, D.F. Evans, Y. Fan, and A. Franciosi, J. Vac. Sci. Technol. A 14, 747 (1996).
45.G. Wang, C.S. Hsieh, D. S. Tsai, R. S. Chen, and Y.S. Huang, J. Mater. Chem. 14, 2503 (2004).
46.S. Barison, D. Barreca, S. Daolio, M. Fabrizio, and E. Tondello, J. Mater. Chem. 12, 1511 (2002).
47.T. Hepel, F. H. Pollak, and W. E. O’ Grady, Solid State Sci. and Technol. 131, 2094 (1984).
48.L. M. Doubova, S. Daolio, and A. De Battisti, J. Electroanal. Chem. 532, 25 (2002).
49.S. Ardizzone, A. Daghetti, L. Franceschi, and S. Trasatti, Colloids and Surface 35, 85 (1989).
50.K. H. Chang and C. C. Hu, Appl. Phys. Lett. 88, 193102 – 1 (2006).
51.I. Zhitomirsky and L. Gal – Or, Mater. Lett. 31, 155 (1997).
52.I. Zhitomirsky, Mater. Lett. 33, 305 (1998).
53.T. Liu, W. G. Pell, and B. E. Conway, Electrochimica Acta 42, 3541 (1997).
54.C. C. Hu and Y. H. Huang, J. Electrochem. Soc. 146, 2464 (1999).
55.C. C. Hu and K. H. Chang, Electrochimica Acta 45, 2685 (2000).
56.B. O. Park, C. D. Lokhande, H. S. Park, K. D. Jung, and O. S. Joo, J. Mater. Sci. 39, 4313 (2004).
57.K. H. Chang and C. C. Hu, Electrochem. Solid - State Lett. 7, A466 (2004).
58.K. E. Swider – Lyons, C. T. Love, and D. R. Rolison, J. Electrochem. Soc. 152, C158 (2005).
59.C. B. Arnold, R. C. Wartena, K. E. Swider – Lyons, and A. Pique, J. Electrochem. Soc. 150, A571 (2003).
60.W. Dmowski, T. Egami, K. E. Swider – Lyons, C. T. Love, and D. R. Rolison, J. Phys. Chem. B 106, 12677 (2002).
61.R. Fu, Z. Ma, and J. P. Zheng, J. Phys. Chem. B 106, 3592 (2002).
62. K. L. Choy, Progress in Materials Science 48, 57 (2003).
63.K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology, Noyes Publications, New Jersey, USA (1992).
64.S. Berg and T. Nyberg, Thin Solid Films 476, 215 (2005).
65.http://en.wikipedia.org/wiki/Plasma_(physics)
66.S. H. Lee, P. Liu, M. J. Seong, H. M. Cheong, C. E. Tracy, and S. K. Deb, Electrochem. Solid – State Lett. 6, A40 (2003).
67.B.E. Conway, Electrochemical Capacitors: Their Nature, Function, and Applications
http://electrochem.cwru.edu/ed/encycl/art-c03-elchem-cap.htm
68.http://commons.wikimedia.org/wiki/Image:Parallel_plate_capacitor.svg
69.http://en.wikipedia.org/wiki/Capacitor
70.R. Kötz and M. Carlen, Electrochimica Acta 45, 2483 (2000).
71.C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, Appl. Phys. Lett. 70, 1480 (1997).
72.B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Z. Zhou, and Y. Yang, Electrochem. Commun. 10, 795 (2008).
73.V.V. Panić, R. M. Stevanović, V. M. Jovanović, and A. B. Dekanski, J. Power Sources 181, 186 (2008).
74.2007 International Conference on Advanced Capacitors Extended Abstract.
75.http://www.gamry.com/App_Notes/EIS_Primer/EIS_Primer.htm
76.Solartron Electrochemical Impedance Software Operating Manual Version 2.6, Scribner Associates, Inc., 2001.
77.Sam Palmer, Electrolytic Capacitors
http://electrochem.cwru.edu/ed/encycl/art-c04-electr-cap.htm
78.JCPDS-ICCD #06-0663
79.K. Reuter and M. Scheffler, Surf. Sci. 490, 20 (2001).
80.H. Over, A.P. Seitsonen, E. Lundgren, M. Smedh, and J.N. Andersen, Surf. Sci. 504, L196 (2002).
81.J. Hrbek, D.G. van Campen, and I.J. Malik, J. Vac. Sci. Technol. A 13, 1409. (1995).
82.J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc., Minnesota, 115, (1995).
83.A. Foelske, O. Barbieri, M. Hahn, and R. Kotz, Electrochem. Solid-State Lett. 9, A268 (2006)
84.D.A. McKeown, P.L. Hagans, L.P.L. Carette, A.E. Russell, K.E. Swider, and D.R. Rolison, J. Phys. Chem. B 103, 4825 (1999).
85.B.E. Conway, in Impedance Spectroscopy Theory, Experiment, and Application; E. Barsoukov and J.R. Macdonald, Eds, Wiley, New Jersey, 2005, pp. 492-497.
86.JCPDS-ICCD #80-0322
87.JCPDS-ICCD #80-0018
88.JCPDS-ICCD #44-1294
89.JCPDS-ICCD #86-1157
90.JCPDS-ICCD #04-0784

無法下載圖示 全文公開日期 2010/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE