簡易檢索 / 詳目顯示

研究生: 廖宥全
Yu-Chuan Liao
論文名稱: 利用流式篩網裝置專一性抓取大腸癌循環腫瘤細胞於電化學檢測應用
Using Fluidic Sieve Device to Capture Colorectal Cancer Circulating Tumor Cells by Electrochemical Analysis
指導教授: 陳建光
Jem-Kun Chen
口試委員: 鄭智嘉
Chih-Chia Cheng
李愛薇
Ai-Wei Lee
黃啟賢
Chi-Hsien Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 119
中文關鍵詞: 篩網電極流體裝置電化學檢測循環腫瘤細胞全血中細胞抓取細胞監控
外文關鍵詞: Sieve electrodes, Fluidic device, Electrochemical detection, Circulating tumor cell, Whole blood, Cell monitoring
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以自由基聚合法合成聚甲基丙烯酸磺基甜菜鹼-丙烯酸poly(SBMA-co-AA)之隨機共聚合物(Random copolymers),並使用孔徑大小 20 m 的尼龍篩網作為基材,接著以物理氣相沉積法(Physical Vapor Deposition)在尼龍篩網表面鍍金形成電極,再以 EDC/NHS 共價鍵固定法將共聚高分子包覆在電極表面上,最後於表面修飾鏈親和素(Streptavidin)與專一性抗體(Anti-EpCAM conjugated Biotin),結合自製的流體裝置進行大腸癌循環腫瘤細胞的抓取,並利用電化學方法進行定量分析。從實驗結果得知,當 poly(SBMA-co-AA)比例為 1:9 時有較好的抓取率約 52.5 %及抗沾黏效果約 99.8 %,且具有優異的選擇性,而在流速為 1 mL/hr 有最佳的抓取效率。在利用電化學阻抗頻譜分別偵測 5、10、20、40、80顆循環腫瘤細胞,發現阻抗變化有高度的正相關。在加入全血進行仿臨床實驗中,發現此裝置能夠在 1 mL的全血中有效的偵測到 10 顆以上的大腸癌循環腫瘤細胞,且隨著細胞增加同樣也呈現正相關。此外,我們也將電化學方法應用於細胞培養監控,可得知當細胞貼附、生長後,阻抗值隨之上升。本研究成功製備出利用流式篩網裝置專一性抓取大腸癌循環腫瘤細胞於電化學定量分析並能夠監控細胞生長,提供一個快速、便利且高靈敏度的檢測試片。


In this study, we use free radical polymerization to synthesize the random copolymer poly(SBMA-co-AA). First we generate the electrode which is nylon sieve with pore size 20 m and it is plated with gold by physical vapor deposition. Then coat copolymer on the electrode by EDC/NHS reaction and modify the surface by using Streptavidin and its specific antibody (Anti-EpCAM conjugated Biotin). The electrode is combined with handmade fluidic device to capture colorectal cancer circulating tumor cell and analyze the quantity by electrochemical methods. We found that the better capture rate is about 52.5 %, the greater anti-fouling property is approximately 99.8 % and the more excellent selectivity occur when the proportion of poly(SBMA-co-AA) is 1:9. Moreover the best efficiency of capture occurs when the flow rate is at 1 mL/hr. The essay shows that electrochemical impedance spectroscopy is highly positive correlation with circulating tumor cell. And it obtains quite low detection limit for 10 circulating tumor cells in 1 mL whole blood. Additionally we apply electrochemical method in cell monitoring and the results indicate that when the cells adhere and grow, the impedance increases.
We successfully generate a rapid, convenient and high sensitive fluidic device, which can specifically capture colorectal cancer circulating tumor cells, and quantitatively analyzes by electrochemical methods and cell monitoring.

目錄 摘要……………………………………………………………………..iii Abstract …………………………………………………………………..v 致謝……………………………………………………………………..vii 目錄……………………………………………………………………...ix 圖目錄 ………………………………………………………………...xiv 表目錄.......................... xix 1. 緒論 ............................................................................................... 1 1.1. 研究動機與目的 .................................................................... 1 1.2. 研究背景 ................................................................................ 4 2. 文獻回顧與實驗理論 ................................................................... 6 2.1. 循環腫瘤細胞 ............................................................ 6 2.1.1. 循環腫瘤細胞介紹 ......................................................... 6 2.1.2. 循環腫瘤細胞生物特性標記 ......................................... 7 2.1.3. 循環腫瘤細胞抓取 ......................................................... 9 2.1.4. 循環腫瘤細胞培養-電化學即時監控 ......................... 13 2.2. 電化學偵測原理 .............................................................. 14 2.2.1. 電化學感測器 .............................................................. 14 2.2.2. 循環伏安分析法 ........................................................... 15 2.2.3. 電化學阻抗頻譜 ........................................................... 17 2.2.4. 生物感測器於電化學之應用 ....................................... 19 2.3. 聚丙烯酸 ................................................................... 21 2.4. 抗沾黏高分子之應用 .......................................................... 22 2.5. 共聚高分子-自由基聚合法 ................................................ 24 2.6. 生物分子與材料介面固定法 .............................................. 25 2.6.1. 生物分子固定法 ........................................................... 25 2.6.2. 共價鍵固定法(EDC-NHS reaction) ............................. 26 2.6.3. 生物親合法(Biotin-Streptavidin system) ..................... 27 3. 儀器原理 ........................................................... 29 3.1. 電漿蝕刻機 .................................................................. 29 3.2. 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope) ............................................... 31 3.3. 場 發 射 槍 穿 透 式 電 子 顯 微 鏡 (Field Emission Gun Transmission Electron Microscopy) .......................................... 32 3.4. 接觸角量測儀 (Contact Angle Meter) ............................... 37 3.5. 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer) ............................................................ 38 3.6. 核磁共振儀 (Nuclear Magnetic Resonance) ...................... 40 3.7. X 射線光電子能譜儀 (X-Ray Photoelectron Spectroscope) 41 3.8. 雷射共軛焦顯微鏡 (Spectral Confocal and Multiphoton System) ................................................................... 42 3.9. 恆電位分析儀 (Potential Stat) ............................................ 44 3.10. 螢光光譜儀 (Fluorescence Spectroscopy) ......................... 45 4. 實驗流程與方法 ............................................................. 46 4.1. 實驗流程圖 .................................................................. 46 4.2. 實驗藥品 ................................................................ 47 4.3. 實驗儀器 ................................................................. 49 4.4. 實驗步驟 ................................................................... 50 4.4.1. 篩網基材之選擇 ........................................................... 50 4.4.2. 共聚高分子合成 ........................................................... 51 4.4.3. 篩網電極之製備 ........................................................... 52 4.4.4. 修飾專一性抗體於電極表面 ....................................... 53 4.4.5. 生物檢體處理與染色 ................................................... 53 4.4.6. 利用流體裝置抓取循環腫瘤細胞 ............................... 55 4.4.7. 電化學分析儀進行細胞定量檢測 ............................... 56 4.4.8. 細胞培養 ........................................................... 56 4.4.9. 顯微鏡試片製作 ........................................................... 57 4.4.10. 螢光標準曲線分析 ................................................ 58 5. 實驗結果與討論 ......................................................... 59 5.1. Poly(SBMA-co-AA)包覆尼龍篩網之分析 ........................ 59 5.1.1. 尼龍篩網電極製備 ....................................................... 59 5.1.2. 合成共聚高分子 poly(SBMA-co-AA)之定性分析 .... 60 5.1.3. Poly(SBMA-co-AA) 包覆電極之表面形貌-SEM ..... 65 5.1.4. 共聚高分子 poly(SBMA-co-AA) 包覆電極定性分析.............66 5.2. 修飾專一性抗體於篩網電極表面抓取大腸癌循環腫瘤細胞............70 5.2.1. 修飾專一性抗體於電極表面之定性分析 ................... 71 5.2.2. 修飾專一性抗體於電極表面之電訊號分析 ............... 72 5.2.3. 專一性抗體於電極表面之專一性抓取分析 ............... 74 5.2.4. 流體流速對於大腸癌循環腫瘤細胞抓取率之影響 ... 79 5.2.5. 選擇性 ...................................................... 80 5.3. 電化學分析技術偵測微量大腸癌循環腫瘤細胞.............. 82 5.3.1. 微量大腸癌循環腫瘤細胞定量分析 ........................... 82 5.3.2. 仿臨床實驗 ................................................. 87 5.4. 細胞培養監控 ..................................................... 90 6. 結論 .................................................................. 93 7. 參考文獻 ..................................................................... 94

[1] T. Ashworth, "A case of cancer in which cells similar to those in the tumours were seen in the blood after death," Aust Med J., vol. 14, p. 146, 1869. [2] H. J. Yoon, M. Kozminsky, and S. Nagrath, "Emerging role of nanomaterials in circulating tumor cell isolation and analysis," ACS nano, vol. 8, no. 3, pp. 1995-2017, 2014. [3] B. Weigelt, J. L. Peterse, and L. J. Van't Veer, "Breast cancer metastasis: markers and models," Nature reviews cancer, vol. 5, no. 8, p. 591, 2005. [4] G. P. Gupta and J. Massagué, "Cancer metastasis: building a framework," Cell, vol. 127, no. 4, pp. 679-695, 2006. [5] A. F. Chambers, A. C. Groom, and I. C. MacDonald, "Metastasis: dissemination and growth of cancer cells in metastatic sites," Nature Reviews Cancer, vol. 2, no. 8, p. 563, 2002. [6] I. J. Fidler, "The pathogenesis of cancer metastasis: the'seed and soil'hypothesis revisited," Nature Reviews Cancer, vol. 3, no. 6, p. 453, 2003. [7] J. P. Thiery, "Epithelial–mesenchymal transitions in tumour progression," Nature Reviews Cancer, vol. 2, no. 6, p. 442, 2002. [8] H. Yamaguchi, J. Wyckoff, and J. Condeelis, "Cell migration in tumors," Current opinion in cell biology, vol. 17, no. 5, pp. 559-564, 2005. [9] J. J. Christiansen and A. K. Rajasekaran, "Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis," Cancer research, vol. 66, no. 17, pp. 8319-8326, 2006. [10] P. T. Went et al., "Frequent EpCam protein expression in human carcinomas," Human pathology, vol. 35, no. 1, pp. 122-128, 2004. [11] M. Münz, C. Kieu, B. Mack, B. Schmitt, R. Zeidler, and O. Gires, "The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation," Oncogene, vol. 23, no. 34, p. 5748, 2004. [12] C. A. O’Brien, A. Pollett, S. Gallinger, and J. E. Dick, "A human colon cancer cell capable of initiating tumour growth in immunodeficient mice," Nature, vol. 445, no. 7123, p. 106, 2007. [13] M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, "Prospective identification of tumorigenic breast cancer cells," Proceedings of the National Academy of Sciences, vol. 100, no. 7, pp. 3983-3988, 2003. [14] J. Stingl, C. J. Eaves, I. Zandieh, and J. T. Emerman, "Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue," Breast cancer research and treatment, vol. 67, no. 2, pp. 93-109, 2001. [15] E. Schmelzer et al., "Human hepatic stem cells from fetal and postnatal donors," Journal of Experimental Medicine, vol. 204, no. 8, pp. 1973-1987, 2007. [16] M. Trzpis et al., "Expression of EpCAM is up‐regulated during regeneration of renal epithelia," The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, vol. 216, no. 2, pp. 201-208, 2008. [17] N. J. Nelson, "Circulating tumor cells: will they be clinically useful?," ed: Oxford University Press, 2010. [18] M. Yu, S. Stott, M. Toner, S. Maheswaran, and D. A. Haber, "Circulating tumor cells: approaches to isolation and characterization," The Journal of cell biology, vol. 192, no. 3, pp. 373-382, 2011. [19] C. Alix-Panabières and K. Pantel, "Challenges in circulating tumour cell research," Nature Reviews Cancer, vol. 14, no. 9, p. 623, 2014. [20] M.-D. Zhou et al., "Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells," Scientific reports, vol. 4, p. 7392, 2014. [21] P. D. Rye, H. Høifødt, G. Overli, and O. Fodstad, "Immunobead filtration: a novel approach for the isolation and propagation of tumor cells," The American journal of pathology, vol. 150, no. 1, p. 99, 1997. [22] Z. Liu et al., "High throughput capture of circulating tumor cells using an integrated microfluidic system," Biosensors and Bioelectronics, vol. 47, pp. 113-119, 2013. [23] R. Seenivasan, N. Maddodi, V. Setaluri, and S. Gunasekaran, "An electrochemical immunosensing method for detecting melanoma
cells," Biosensors and Bioelectronics, vol. 68, pp. 508-515, 2015. [24] Y. Wan et al., "Nanotextured substrates with immobilized aptamers for cancer cell isolation and cytology," Cancer, vol. 118, no. 4, pp. 1145-1154, 2012. [25] J. M. Atienza, J. Zhu, X. Wang, X. Xu, and Y. Abassi, "Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays," Journal of biomolecular screening, vol. 10, no. 8, pp. 795-805, 2005. [26] X. Huang, Y. Liu, B. Yung, Y. Xiong, and X. Chen, "Nanotechnology-Enhanced No-Wash Biosensors for in Vitro Diagnostics of Cancer," ACS Nano, vol. 11, no. 6, pp. 5238-5292, Jun 27 2017. [27] M. Labib, E. H. Sargent, and S. O. Kelley, "Electrochemical methods for the analysis of clinically relevant biomolecules," Chemical reviews, vol. 116, no. 16, pp. 9001-9090, 2016. [28] L. Wu, E. Xiong, X. Zhang, X. Zhang, and J. Chen, "Nanomaterials as signal amplification elements in DNA-based electrochemical sensing," Nano Today, vol. 9, no. 2, pp. 197-211, 2014. [29] A. Chen and S. Chatterjee, "Nanomaterials based electrochemical sensors for biomedical applications," Chemical Society Reviews, vol. 42, no. 12, pp. 5425-5438, 2013. [30] M. Azimzadeh, M. Rahaie, N. Nasirizadeh, and H. Naderi-Manesh, "Application of Oracet Blue in a novel and sensitive electrochemical biosensor for the detection of microRNA," Analytical Methods, vol. 7, no. 22, pp. 9495-9503, 2015. [31] M. Cui, Z. Song, Y. Wu, B. Guo, X. Fan, and X. Luo, "A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT," Biosens Bioelectron, vol. 79, pp. 736-41, May 15 2016. [32] H. Shen et al., "A novel label-free and reusable electrochemical cytosensor for highly sensitive detection and specific collection of CTCs," Biosens Bioelectron, vol. 81, pp. 495-502, Jul 15 2016. [33] N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, "Hydrogels in biology and medicine: from molecular principles to bionanotechnology," Advanced materials, vol. 18, no. 11, pp. 1345-1360, 2006. [34] A. Södergård, "Preparation of poly (ε‐caprolactone)‐co‐poly (acrylic acid) by radiation‐induced grafting," Journal of Polymer Science Part A: Polymer Chemistry, vol. 36, no. 11, pp. 1805-1812, 1998. [35] S.-D. Lee, G.-H. Hsiue, P. C.-T. Chang, and C.-Y. Kao, "Plasma-induced grafted polymerization of acrylic acid and subsequent grafting of collagen onto polymer film as biomaterials," Biomaterials, vol. 17, no. 16, pp. 1599-1608, 1996. [36] K. Matsumura, S. H. Hyon, N. Nakajima, C. Peng, and S. Tsutsumi, "Surface modification of poly (ethylene‐co‐vinyl alcohol)(EVA). Part I. Introduction of carboxyl groups and immobilization of collagen," Journal of biomedical materials research, vol. 50, no. 4, pp. 512-517, 2000. [37] Z. Cheng and S.-H. Teoh, "Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen," Biomaterials, vol. 25, no. 11, pp. 1991-2001, 2004. [38] M. Long and H. Rack, "Titanium alloys in total joint replacement—a materials science perspective," Biomaterials, vol. 19, no. 18, pp. 1621-1639, 1998. [39] B. D. Ratner, "Surface modification of polymers: chemical, biological and surface analytical challenges," Biosensors and bioelectronics, vol. 10, no. 9-10, pp. 797-804, 1995. [40] R. Langer and M. Moses, "Biocompatible controlled release polymers for delivery of polypeptides and growth factors," Journal of cellular biochemistry, vol. 45, no. 4, pp. 340-345, 1991. [41] D. E. Heath and S. L. Cooper, "Design and characterization of PEGylated terpolymer biomaterials," Journal of Biomedical Materials Research Part A, vol. 94, no. 4, pp. 1294-1302, 2010. [42] S. Chen, J. Zheng, L. Li, and S. Jiang, "Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: insights into nonfouling properties of zwitterionic materials," Journal of the American Chemical Society, vol. 127, no. 41, pp. 14473-14478, 2005. [43] S. Jiang and Z. Cao, "Ultralow‐fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications," Advanced materials, vol. 22, no. 9, pp. 920-932, 2010. [44] G. M. Harbers et al., "Functionalized poly (ethylene glycol)-based bioassay surface chemistry that facilitates bio-immobilization and inhibits nonspecific protein, bacterial, and mammalian cell adhesion," Chemistry of Materials, vol. 19, no. 18, pp. 4405-4414, 2007. [45] W. Yang, H. Xue, W. Li, J. Zhang, and S. Jiang, "Pursuing “zero” protein adsorption of poly (carboxybetaine) from undiluted blood serum and plasma," Langmuir, vol. 25, no. 19, pp. 11911-11916, 2009. [46] S. Jeon, J. Lee, J. Andrade, and P. De Gennes, "Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory," Journal of colloid and interface science, vol. 142, no. 1, pp. 149-158, 1991. [47] Z. G. Estephan, P. S. Schlenoff, and J. B. Schlenoff, "Zwitteration as an alternative to PEGylation," Langmuir, vol. 27, no. 11, pp. 6794-6800, 2011. [48] J. B. Schlenoff, "Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption," Langmuir, vol. 30, no. 32, pp. 9625-9636, 2014. [49] W.-H. Kuo, M.-J. Wang, H.-W. Chien, T.-C. Wei, C. Lee, and W.-B. Tsai, "Surface modification with poly (sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation," Biomacromolecules, vol. 12, no. 12, pp. 4348-4356, 2011. [50] G. Odian, Principles of polymerization. John Wiley & Sons, 2004. [51] B. Strachota et al., "Poly (N-isopropylacrylamide)–clay based hydrogels controlled by the initiating conditions: evolution of structure and gel formation," Soft Matter, vol. 11, no. 48, pp. 9291-9306, 2015. [52] F. Rusmini, Z. Zhong, and J. Feijen, "Protein immobilization strategies for protein biochips," Biomacromolecules, vol. 8, no. 6, pp. 1775-1789, 2007. [53] G. T. Hermanson, Bioconjugate techniques. Academic press, 2013. [54] P. Ye, Z.-K. Xu, J. Wu, C. Innocent, and P. Seta, "Nanofibrous membranes containing reactive groups: electrospinning from poly (acrylonitrile-co-maleic acid) for lipase immobilization," Macromolecules, vol. 39, no. 3, pp. 1041-1045, 2006. [55] P. C. Weber, D. Ohlendorf, J. Wendoloski, and F. Salemme, "Structural origins of high-affinity biotin binding to streptavidin," Science, vol. 243, no. 4887, pp. 85-88, 1989. [56] C. L. Smith, J. S. Milea, and G. H. Nguyen, "Immobilization of nucleic acids using biotin-strept (avidin) systems," in Immobilisation of DNA on Chips II: Springer, 2005, pp. 63-90.

無法下載圖示 全文公開日期 2023/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE