簡易檢索 / 詳目顯示

研究生: 蔡昀錚
Yun-Cheng Tsai
論文名稱: 利用磁性奈米粒子快速分離血液中之高密度脂蛋白並利用電化學檢測其氧化性
Use magnetic nanoparticles to quickly separate high-density lipoproteins in the blood and detect their oxidation properties by electrochemistry
指導教授: 陳建光
Jem-Kun Chen
口試委員: 鄭智嘉
Chih-Chia Cheng
黃群耀
Chun-Yao Huang
林豐彥
Feng-Yen Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 144
中文關鍵詞: 高密度脂蛋白鐵奈米粒子磁離純化Protein G抗體DCFH-DA螢光檢測法電化學氧化能力心血管疾病
外文關鍵詞: High-density lipoprotein, iron nanoparticle, magnetic separation and purification, Protein G, antibody, DCFH-DA fluorescence detection, electrochemistry, antioxidant capacity, cardiovascular disease
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用共沉澱法合成鐵奈米粒子,再將鐵奈米粒子跟TEOS以及APTES反應,在外面包上帶有胺基的二氧化矽殼,並得到大小約為150 nm的奈米粒子,再加入EDC/NHS與Protein G反應形成醯胺鍵(Amide bond),接著透過Protein G與IgG的生物親和性結合之後,使抗體與抗原反應,達到快速抓取並純化HDL的功能。
    本研究成功合成每毫克磁性奈米粒子接枝4.25 μg抗體,並且達到 159.1 μg/100ug HDL之穩定抓取,與先前實驗室所合成之鐵奈米粒子HDL抓取率比較,以APTES 、L-Cystein、Thioglycolic acid作為保護基改質之鐵奈米粒子分別只有 3.5 μg/100uL、12.5 μg/100uL HDL、49.46/ug/100ul之抓取率,本篇使用的氨基改值之二氧化矽磁性核殼奈米粒子的HDL抓取率最佳。
    接著將從北醫附醫取得之9名病人純化過的HDL檢體以電化學循環伏安法氧化能力檢測,也與以螢光法測得之氧化數值比較,統計分析得出Pearson's 相關係數為0.98,呈現強相關。
    最後將取出plasma的病人血液,加入純化過的HDL,混合均勻後利用奈米粒子重新抓取,並以電化學循環伏安法氧化能力檢測,也也與以螢光法測得之氧化數值比較,統計分析得出Pearson's 相關係數為0.976,也呈現強相關。
    對此,藉由免疫沉澱法,快速分離血液中的HDL,並透過電化學循環伏安法檢測其氧化能力,來達到快速且能檢驗大量樣本之特性,期望能在未來做出可快速篩檢之檢測HDL功能的檢測工具。


    In this study, the co-precipitation method was used to synthesize iron nanoparticles, and then the iron nanoparticles were reacted with TEOS and APTES to form a silica shell with amine groups on the outer bread, and then nanoparticles with a size of about 150 nm were obtained. Add EDC/NHS to react with Protein G to form an Amide bond, and then through the bioaffinity binding of Protein G and IgG, the antibody reacts with the antigen to achieve the function of quickly grabbing and purifying HDL.
    In this study, we successfully synthesized 4.25 μg of antibody grafted with magnetic nanoparticles per mg, and achieved a stable capture of 159.1 μg/100ug HDL. Compared with the HDL capture rate of iron nanoparticles synthesized in the previous laboratory, APTES, L-Cystein.The iron nanoparticles modified by Cystein and Thioglycolic acid as protective groups only have capture rates of 3.5 μg/100uL, 12.5 μg/100uL HDL, and 49.46/ug/100ul respectively. The silicon dioxide magnetic core with modified amino groups used in this article Shell nanoparticles have the best HDL capture rate.
    Next, the purified HDL samples from 9 patients obtained from Beiyi were tested by electrochemical cyclic voltammetry and compared with the HDL fluorescence oxidation value measured by Beiyi. Statistical analysis showed that the Pearson's correlation coefficient was 0.98. , Showing a strong correlation.Finally, we conducted a further study between the oxidation value and the cardiovascular disease-related factors endothelial progenitor stem cells concentration, and the trend was consistent with literature trend.
    Finally, remove the plasma of the patient’s blood, add the purified HDL, mix it evenly, grab it with nanoparticles, and measure the oxidation capacity by electrochemical cyclic voltammetry, and compare it with the HDL fluorescence oxidation value measured by Beiyi , Statistical analysis shows that Pearson's correlation coefficient is 0.976, which also shows a strong correlation.
    In this regard, this research seeks to replace the old time-consuming method of purifying HDL. By using Protein G and antibodies, the HDL in the blood can be quickly separated, and its oxidation ability can be detected by electrochemical cyclic voltammetry to achieve rapid and efficient performance. To test the characteristics of a large number of samples, it is hoped that in the future, a rapid screening test tool for HDL function can be made.

    目錄 摘要 II Abstract IV 致謝 VI 目錄 VIII 圖目錄 XIV 表目錄 XX 第1章 前言 18 1.1 研究背景 18 1.2 研究動機與目的 21 1.3 臨床和體外研究道德和患者人口統計學 24 第2章 實驗理論與文獻回顧 9 2.1 人類高密度脂蛋白脂螢光氧化試劑法檢驗 9 2.2 HDL分離法 29 2.3 二氧化矽核殼磁性奈米粒子 53 2.3.1 磁性材料特性 53 2.3.2 共沉澱法(Co-precipitation) 22 2.3.3 溶膠凝膠法 23 2.4 表面分子固定法 27 2.5 Protein G 30 2.6 抗體 32 2.7蛋白質檢測法(Bio-Red Protein Assay) 35 2.8電化學檢測 36 2.8.1 電化學反應系統 33 2.8.2 電化學感測器 39 2.8.3 循環伏安分析法....................................................56 2.8.4 生物感測器於電化學之應用 43 2.8.5 網版印刷電極 46 第3章 儀器原理 65 3.1 高解析度場發射掃描式電子顯微鏡(Field-emission scanning electron microscope,FE-SEM) 65 3.2 場發射穿透式電子顯微鏡(Field-emission transmission electron microscope,FE-TEM) 50 3.3 X-射線繞射分析儀(X-ray diffractometer,XRD) 71 3.4 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectrometer,FT-IR) 74 3.5 動態光散射粒徑分析儀(Dynamic light scattering,DLS) 61 3.6 表面電位分析儀(Zeta-potential) 80 3.7 超導量子干涉磁量儀(Superconducting quantum interference device magnetometer,SQUID) 81 3.8 可見光紫外光分光光譜儀(Ultraviolet-visible spectroscopy,UV-vis) 85 3.9 恆電位分析儀 (Potential Stat) 70 3.10全波長多功能微盤分析儀 71 第4章 實驗流程與方法 91 4.1 實驗流程圖 91 4.2 實驗藥品 92 4.3 實驗儀器 80 4.4 實驗步驟 100 4.4.1 Fe3O4奈米粒子的製備 100 4.4.2 Fe3O4@SiO2核殼奈米粒子之製備 103 4.4.3 胺基修飾Fe3O4@SiO2表面(MNP)之製備 103 4.4.4 Protein G@FTANPs核殼奈米粒子的製備 103 4.4.5 PBS緩衝溶液製備 103 4.4.6 電化學之電解液之製備 104 4.4.6 Protein G濃度定量 104 4.4.8 Protein G@ FTANPs核殼奈米粒子之抗體修飾 105 4.4.9 Protein G@FTANPs 抗體修飾反應 105 4.4.10 電化學檢測HDL氧化能力................................106 第5章 結果與討論 91 5.1 SEM表面型態分析 91 5.1.1 Fe3O4NP SEM 影像分析 107 5.1.2 NH2-SiO2@ Fe3O4NP SEM 影像分析...................107 5.2 NH2-SiO2@Fe3O4NP核-殼奈米粒子綜合定性分析 108 5.2.1 NH2-SiO2@ Fe3O4NP定性分析 108 5.2.2 FT-IR定性分析 109 5.2.3 XRD結晶分析 110 5.2.4 DLS粒徑分析 112 5.2.5 Zeta表面電位分析 113 5.2.6 SQUID磁性分析 114 5.3 UV-vis光譜 115 5.3.1 Protein G@ NH2-SiO2@FeNPs 包覆量分析 115 5.3.2 Anti-HDL @Protein G@NH2-SiO2@Fe3O4NPs接枝量分析 119 5.3.3 Anti-HDL Ig G@Protein G@NH2-SiO2@Fe3O4NP對於HDL抓取率測試 107 5.4 以Anti-HDL-FITC 確定Anti-HDL @PG@FTANPs對HDL的抓取 125 5.5 HDL@ Anti-HDL IgG @Protein G @ NH2-SiO2@Fe3O4NPs臨床小樣本之DCF螢光法氧化能力檢驗 126 5.6 電化學循環伏安法穩定性測試 128 5.7 北醫附醫檢體HDL之電化學訊號以及與DCFH-DA螢光法之結果與相關性 130 5.8以Anti-HDL-FITC確定Anti-HDL@PG@FTANPs從血液中抓取到HDL 130 5.9 血液中抓取北醫附醫檢體HDL之電化學訊號以及與DCFH-DA螢光變化率之結果與相關性 130 5.10 血液中抓取以及純北醫附醫檢體HDL之電化學訊號與DCFH-DA螢光變化率之結果與相關性 130 第6章 結論 137 參考文獻 139

    參考文獻
    1. Rader, D.J., Molecular regulation of HDL metabolism and function: implications for novel therapies. The Journal of clinical investigation, 2006. 116(12): p. 3090-3100.
    2. Navab, M., et al., A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. Journal of lipid research, 2001. 42(8): p. 1308-1317.
    3. Rosenson, R.S., et al., Dysfunctional HDL and atherosclerotic cardiovascular disease. Nature Reviews Cardiology, 2016. 13(1): p. 48-60.
    4. Hafiane, A. and J. Genest, High density lipoproteins: Measurement techniques and potential biomarkers of cardiovascular risk. BBA Clinical, 2015. 3: p. 175-188.
    5. Kelesidis, T., et al., A biochemical fluorometric method for assessing the oxidative properties of HDL.2011. 52(12): p. 2341-2351.
    6. Van Roosbroeck, R., et al., Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI.2014. 8(3): p. 2269-2278.
    7. Hafiane, A. and J.J.B.c. Genest, High density lipoproteins: measurement techniques and potential biomarkers of cardiovascular risk.2015. 3: p. 175-188.
    8. Benjamin, E.J., P. Muntner, and M.S. Bittencourt, Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation, 2019. 139(10): p. e56-e528.
    9. World Health Organization 2013-2020年預防和控制非傳染性疾病全球計畫. https://apps.who.int/gb/ebwha/pdf_files/WHA66/A66_R10-ch.pdf?ua=1].
    10. Ministry of Health and Welfare 107年國人死因統計結果. 2019; https://www.mohw.gov.tw/cp-16-48057-1.html].
    11. Goldstein, L. and S. Brown, The low-density lipoprotein pathway and its relation to atherosclerosis. Annual review of biochemistry, 1977. 46(1): p. 897-930.
    12. Assmann, G. and A.M. Gotto Jr, HDL cholesterol and protective factors in atherosclerosis. Circulation, 2004. 109(23_suppl_1): p. III-8-III-14.
    13. Taiwan Society of Lipids & Atheroscierosis 2009年台灣血脂異常防治共識-血指異常預防及診療臨床指引.
    14. Zheng, C., et al., High-density lipoproteins: from function to therapy. Journal of the American College of Cardiology,2012. 60(23): p. 2380-2383.
    15. Bonroy, K., et al., Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. Journal of Immunological Methods,2006. 312(1): p. 167-181.
    16. Navab, M., et al., Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1.2000. 41(9): p. 1481-1494.
    17. Navab, M., et al., A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids.2001. 42(8): p. 1308-1317.
    18. Navab, M., et al., Mechanisms of disease: proatherogenic HDL—an evolving field. Nature clinical practice Endocrinology & metabolism,2006. 2(9): p. 504-511.
    19. Ansell, B.J., et al., Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation,2003. 108(22): p. 2751-2756.
    20. Undurti, A., et al., Modification of high density lipoprotein by myeloperoxidase generates a pro-inflammatory particle. Journal of Biological Chemistry,2009. 284(45): p. 30825-30835.
    21. Patel, S., et al., Reconstituted high-density lipoprotein increases plasma high-density lipoprotein anti-inflammatory properties and cholesterol efflux capacity in patients with type 2 diabetes. Journal of the American College of Cardiology,2009. 53(11): p. 962-971.
    22. Thévenot, D.R., et al., Electrochemical biosensors: recommended definitions and classification. Analytical Letters,2001. 34(5): p. 635-659.
    23. Navab, M., et al., A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids,2001. 42(8): p. 1172-1335.
    24. Castelli, W.P., et al., Distribution of triglyceride and total, LDL and HDL cholesterol in several populations: a cooperative lipoprotein phenotyping study,1977. 30(3): p. 147-169.
    25. Sarafian, M.H., et al., Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid Chromatography–Mass spectrometry,2014. 86(12): p. 5766-5774.
    26. Wieland, H. and D.J.J.o.L.R. Seidel, A simple specific method for precipitation of low density lipoproteins,1983. 24(7): p. 904-909.
    27. Seidel, D., P. Alaupovic, and R.J.T.J.o.c.i. Furman, A lipoprotein characterizing obstructive jaundice. I. Method for quantitative separation and identification of lipoproteins in jaundiced subjects,1969. 48(7): p. 1211-1223.
    28. Chen, J.K., S. Labrake‐Farmer, and D.B.J.J.o.c.p. McClure, Purified HDL‐apolipoproteins, A‐I and C‐III, substitute for HDL in promoting the growth of SV40‐transformed REF52 cells in serum‐free medium,1986. 128(3): p. 413-420.
    29. Goux, A., et al., Capillary gel electrophoresis analysis of apolipoproteins AI and A-II in human high-density lipoproteins,1994. 218(2): p. 320-324.
    30. Sun, S. and H.J.J.o.t.A.C.S. Zeng, Size-controlled synthesis of magnetite nanoparticles,2002. 124(28): p. 8204-8205.
    31. Friák, M., A. Schindlmayr, and M. Scheffler, Ab initio study of the half-metal to metal transition in strained magnetite. New journal of physics, 2007. 9(1): p. 5.
    32. Cullity, B.D. and C.D. Graham, Introduction to magnetic materials. 2011: John Wiley & Sons.
    33. Bychkov, Y.A. and E.I.J.J.o.p.C.S.s.p. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers,1984. 17(33): p. 6039.
    34. Meissner, W. and R. Ochsenfeld, Ein neuer effekt bei eintritt der supraleitfähigkeit. Naturwissenschaften,1933. 21(44): p. 787-788.
    35. Kittel, C., Introduction to Solid State Physics, 6th edn.,1986. Wiley.
    36. Ngo, A., et al., Nanoparticles of: Synthesis and superparamagnetic properties.1999. 9(4): p. 583-592.
    37. Xuan, S., et al., Tuning the grain size and particle size of superparamagnetic Fe3O4 microparticles.2009. 21(21): p. 5079-5087.
    38. Valenzuela, R., et al., Influence of stirring velocity on the synthesis of magnetite nanoparticles (Fe3O4) by the co-precipitation method. Journal of Alloys and Compounds,2009. 488(1): p. 227-231.
    39. Rani, S. and G.D. Varma, Superparamagnetism and metamagnetic transition in Fe3O4 nanoparticles synthesized via co-precipitation method at different pH. Physica B: Condensed Matter,2015. 472: p. 66-77.
    40. Kumar, R. M., et al., Silver ion release from antimicrobial polyamide/silver composites. Biomaterials,2005, 26, 8.
    41. Young, S. K., et al., Nafion®/ORMOSIL nanocomposites via polymer-in situ sol–gel reactions. 1. Probe of ORMOSIL phase nanostructures by 29Si solid-state NMR spectroscopy. Polymer,2002, 43, 10.
    42. Sun, X., et al., Study on the ammonia-catalyzed hydrolysis kinetics of single phenyltriethoxysilane and mixed phenyltriethoxysilane/tetraethoxysilane systems by liquid-state 29Si NMR. Colloids and Surfaces A,2006, 289, 9.
    43. Kickelbick, G., Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. PROG POLYM SCI,2003, 28, 32.
    44. Kachurina, O., et al., Technique for the removal of organic–inorganic hybrid coatings from 2024-T3 aluminum all. PROG ORG COAT,2003, 47, 6.
    45. Dianyu, C., et al., Preparation and polymerization catalysis studies of the active carbon loaded catalyst of silicotungstic acid. Chemistry mag. Org. 2007, 9, 8.
    46. Iler, R. K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica. Wiley: New York,1979.
    47. Rusmini, F., Z. Zhong, and J. Feijen, Protein Immobilization Strategies for Protein Biochips. Biomacromolecules,2007. 8(6): p. 1775-1789.
    48. Feeney, R.E., G. Blankenhorn, and H.B. Dixon, Carbonyl-amine reactions in protein chemistry, in Advances in protein chemistry.1975, Elsevier. p. 135-203.
    49. Rusmini, F., Z. Zhong, and J.J.B. Feijen, Protein immobilization strategies for protein biochips.2007. 8(6): p. 1775-1789.
    50. Yan, Q., et al., EDC/NHS activation mechanism of polymethacrylic acid: anhydride versus NHS-ester. RSC Advances,2015. 5(86): p. 69939-69947.
    51. Wang, C., et al., Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions. Langmuir, 2011. 27(19): p. 12058-68.
    52. Vashist, S.K., Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) CarbodiimideBased Strategies to Crosslink Antibodies on Amine-FunctionalizedPlatforms for Immunodiagnostic Applications. Diagnostics, 2012. 2(3): p. 23-33.
    53. Bilitewski, U., Protein-sensing assay formats and devices. Analytica Chimica Acta,2006, 568, (1–2), 232-247.
    54. Uhlen, M., et al., Complete Sequence of the Staphylococcal Gene Encoding Protein A. The Journal of Biological Chemistry,1984, 259, 8.
    55. Bengt Guss, M. E., et al., Structure of the IgG-binding regions of streptococcal protein G. The EMBO Journal,1986, 5, 9.
    56. Song, H. Y.; et al., Comparative study of random and oriented antibody immobilization as measured by dual polarization interferometry and surface plasmon resonance spectroscopy. Langmuir : the ACS journal of surfaces and colloids,2012, 28, (1), 997-1004.
    57. Zheng, Z., et al., Protein L: a novel reagent for the detection of Chimeric Antigen Receptor (CAR) expression by flow cytometry , Journal of Translational Medicine,2012, 10, (29).
    58. MacCallum, R.M., A.C.R. Martin, and J.M. Thornton, Antibody-antigen Interactions: Contact Analysis and Binding Site Topography. Journal of Molecular Biology,1996. 262(5): p. 732-745.
    59. Edelman, G.M.J.S., Antibody structure and molecular immunology. 1973. 180(4088): p. 830-840.
    60. Arora, M., Cell culture media: a review. Mater Methods,2013. 3(175): p. 24.
    61. Antigen-binding site. Available from: https://www.britannica.com/science/antigen-binding-site.
    62. Compton, S.J. and C.G.J.A.b. Jones, Mechanism of dye response and interference in the Bradford protein assay.1985. 151(2): p. 369-374.
    63. Pletcher, D. and F.C. Walsh, Industrial electrochemistry. 2012: Springer Science & Business Media.
    64. Peljo, P. and H.H. Girault, Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy & Environmental Science,2018. 11(9): p. 2306-2309.
    65. Bockris, J.O.M. and A.K. Reddy, Modern electrochemistry 2B: electrodics in chemistry, engineering, biology and environmental science. Vol. 2. 2000: Springer Science & Business Media.
    66. Hui, C., et al., Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors. Processes,2019. 7(12): p. 922.
    67. Thévenot, D.R., et al., Electrochemical Biosensors: Recommended Definitions and Classification*. Analytical Letters,2007. 34(5): p. 635-659.
    68. Luo, X., et al., Application of Nanoparticles in Electrochemical Se
    nsors and Biosensors. Electroanalysis,2006. 18(4): p. 319-326.
    69. Bakker, E. and M. Telting-Diaz, Electrochemical Sensors. Analytical Chemistry,2002. 74(12): p. 2781-2800.
    70. Shao, Y., et al., Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010. 22(10): p. 1027-1036.
    71. Chevion, S., M.A. Roberts, and M. Chevion, The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radical Biology and Medicine,2000. 28(6): p. 860-870.
    72. Heineman, P.T.K.W.R., Cyclic Voltammetry. Journal of Chemical Education: p. 772.
    73. Zhu, C., et al., Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Analytical Chemistry,2015. 87(1): p. 230-249.
    74. Campuzano, S., et al., Motion-driven sensing and biosensing using electrochemically propelled nanomotors. Analyst,2011. 136(22): p. 4621-30.
    75. Wang, Y., et al., Electrochemical sensors for clinic analysis. Sensors, 2008. 8(4): p. 2043-2081.
    76. Yang, Y., et al., Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules. Carbon, 2018. 129: p. 380-395.
    77. Wang, J., et al., Performance of screen-printed carbon electrodes fabricated from different carbon inks.1998. 43(23): p. 3459-3465.
    78. Dias, A.M.G.C., et al., A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnology Advances,2011. 29(1): p. 142-155.
    79. Jannah, N.N. and D. Onggo, Synthesis of Fe3O4 nanoparticles for colour removal of printing ink solution. Journal of Physics: Conference Series, 2019. 1245.
    80. Lan, T.R. et al., Magnetic Nanoparticles: Computer Simulation, Chemical Synthesis and Biomedical Diagnosis. Nanotechnology Research Journal,2012. p. 249-270.

    無法下載圖示 全文公開日期 2031/08/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE