簡易檢索 / 詳目顯示

研究生: 陳威宇
Wei-Yu Chen
論文名稱: 高效率和長壽命綠光串聯元件之研究
Study on High-efficiency and Long-lifetime Green Tandem Organic Light Emitting Diodes
指導教授: 李志堅
Chih-Chien Lee
口試委員: 劉舜維
Shun-Wei Liu
李志堅
Chih-Chien Lee
范慶麟
Ching-Lin Fan
張志豪
Chih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 電荷產生層高效率長壽命串聯結構OLED
外文關鍵詞: Charge generation layer, High efficiency, Long lifetime, Tandem structure, OLED
相關次數: 點閱:198下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自 1987 年 OLED 發展以來,OLED在固態照明及顯示器應用發展快速,在顯示器應用方面,需要有高效率、高亮度及長壽命的OLED,而串聯式OLED能夠透過串聯數個發光單元來構建高效率、高亮度、長壽命的OLED顯示器和有機固態光源。
    本論文透過改變電洞傳輸層及電子傳輸層的厚度,以及發光層的比例,將綠色有機磷光元件將單一元件的效率調整至最佳,並透過電性測試最佳電荷產生層,選用CNT2T:Li2CO3/ HATCN作為電荷產生層,量測電容來找出電荷產生層達到高效的電荷產生能力,而我們研究透過電荷產生層連接兩個發光單元及三個發光單元,並與單一元件做比較。
    而我們透過改變電洞傳輸層來調配出最佳光學諧振,使串聯式元件每個發光單元發揮出最佳效率,與單一元件與Two、Three – tandem效率相比較,Two-tandem、Three-tandem分別為單一元件的2.13、2.8倍,Three – tandem串聯式元件之元件表現為量子效率達到了80.60 %、電流效率為334.80 cd/A、功率效率129.81 lm/W,在操作電流0.135 mA、1000 cd/m2亮度下,元件半衰期壽命為 48136 h。


    Since the development of OLEDs in 1987, OLEDs have developed rapidly in solid-state lighting and display applications. Tandem OLEDs are capable of building high-efficiency, high-brightness, long-lifetime OLED displays and organic solid-state light sources by connecting several light emitting units in series.
    In this paper, by varying the thickness of the hole transmission layer and the electron transmission layer, as well as the ratio of the emitting layer. Optimize the efficiency of a single device with green organic phosphorescent device. And the best charge generation layer by electrical test. CNT2T:Li2CO3/ HATCN is selected as the charge generation layer. Measure capacitance to find the charge generation layer to achieve efficient charge generation capability. We studied the connection of two light-emitting units and three light-emitting units through charge-generating layers and compared it with a single device.
    And we adjust the best optical resonance by changing the hole transmission layer, Let each light-emitting unit of the tandem element exert the best efficiency. Compared to single component and Two, Three - tandem efficiency.
    Two-tandem and Three-tandem are 2.13 and 2.8 times of single device, respectively. Three - tandem device have achieved a quantum efficiency of 80.60 %, current efficiency of 334.80 cd/A, and power efficiency of 129.81 lm/W. Under the operating current of 0.135 mA and 1000 cd/A brightness, the half-lifetime of the device is 96650 h.

    中文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1-1 前言 1 1-2 有機發光二極體元件歷史 2 1-2-1 平面單層結構 2 1-2-2 多層結構 2 第二章 研究動機與文獻探討 6 2-1 研究動機 6 2-2 文獻探討 7 第三章 基礎理論 14 3-1 有機發光二極體元件發光原理 14 3-1-1 電激發光原理 14 3-1-1 有機材料發光機制 15 3-1-2 三重態磷光發光原理 16 3-2 電激發磷光發光機制 17 3-2-1 能量轉移 17 3-2-2 載子捕捉 19 3-2-3 Exciplex機制 20 3-3 有機發光二極體之壽命 21 第四章 實驗流程與設備 22 4-1 實驗材料 22 4-1-1 基板及金屬電極材料 22 4-1-2 有機發光材料 22 4-2 實驗儀器 24 4-2-1 超音波清洗機 24 4-2-2 濺鍍機 24 4-2-3 雷雕機 25 4-2-4 薄膜厚度輪廓量測儀 (α-step) 26 4-2-5 手套箱 27 4-2-6 熱蒸鍍機 27 4-2-7 分光式輝度計 28 4-2-8 壽命量測系統 29 4-2-9 阻抗分析系統 29 4-2-10 紫外光曝光機 29 4-3 實驗步驟 30 4-3-1 元件圖案化設計 30 4-3-2 陽極ITO製程 30 4-3-3 真空熱蒸鍍沉積 31 4-3-4 玻璃封裝製程 31 4-4 元件量測分析 33 4-4-1 元件電性量測 33 4-4-1 元件效率量測 33 第五章 研究內容與討論 34 5-1 單一綠色磷光元件 34 5-1-1 單一綠色磷光元件能階探討 34 5-1-2 發光層比例測試與電子傳輸層厚度變化 35 5-1-3 電洞傳輸層厚度變化 38 5-1-4 電子傳輸層厚度變化 41 5-2 連接層電性測試 44 5-2-1 連接層結構測試 44 5-2-2 連接層摻雜濃度變化測試 46 5-2-3 連接層特性分析 47 5-3 串聯式綠色磷光元件 48 5-3-1 串聯式綠色磷光元件電洞傳輸層厚度變化(Two-tandem) 48 5-3-2 串聯式綠色磷光元件電洞傳輸層厚度變化(Three-tandem) 51 5-4 實驗結果與討論 56 5-4-1 元件效率比較 56 5-4-2 元件壽命比較 59 5-4-3 歷年文獻比較 61 第六章 結論 63 參考文獻 64

    [1] Pope, M., et al. (1963). "Electroluminescence in organic crystals." The Journal of Chemical Physics 38 (8): 2042-2043.
    [2] Tang, C. W. and S. A. VanSlyke (1987). "Organic electroluminescent diodes." Applied physics letters 51 (12): 913-915.
    [3] Adachi, C., et al. (1988). "Organic electroluminescent device with a three-layer structure." Japanese journal of applied physics 27 (4A): L713.
    [4] Adachi, C., et al. (1990). "Confinement of charge carriers and molecular excitons within 5‐nm‐thick emitter layer in organic electroluminescent devices with a double heterostructure." Applied physics letters 57 (6): 531-533.
    [5] Kido, J., et al. (1992). "Organic electroluminescent devices based on molecularly doped polymers." Applied physics letters 61 (7): 761-763.
    [6] Kido, J., et al. (1995). "Multilayer white light-emitting organic electroluminescent device." Science 267 (5202): 1332-1334.
    [7] Kido, J., et al. (2003). 27.1: Invited paper: High efficiency organic el devices having charge generation layers. SID Symposium Digest of Technical Papers, Wiley Online Library.
    [8] Liao, L., et al. (2004). "High-efficiency tandem organic light-emitting diodes." Applied physics letters 84 (2): 167-169.
    [9] Chang, C.-C., et al. (2004). "High-efficiency organic electroluminescent device with multiple emitting units." Japanese journal of applied physics 43 (9R): 6418.
    [10] Cho, T.-Y., et al. (2006). "Microcavity two-unit tandem organic light-emitting devices having a high efficiency." Applied physics letters 88 (11): 111106.
    [11] Birnstock, J., et al. (2008). 54.3: Distinguished Paper: White Stacked OLED with 35 lm/W and 100,000 Hours Lifetime at 1000 cd/m2 for Display and Lighting Applications. SID Symposium Digest of Technical Papers, Wiley Online Library.
    [12] Valeur, B. and M. N. Berberan-Santos (2012). Molecular fluorescence: principles and applications, John Wiley & Sons.
    [13] Baldo, M., et al. (1999). "Very high-efficiency green organic light-emitting devices based on electrophosphorescence." Applied physics letters 75 (1): 4-6.
    [14] O’brien, D., et al. (1999). "Improved energy transfer in electrophosphorescent devices." Applied physics letters 74 (3): 442-444.
    [15] Főrster, T. (1959). "10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation." Discussions of the Faraday Society 27: 7-17.
    [16] Baldo, M. A., et al. (1999). "Excitonic singlet-triplet ratio in a semiconducting organic thin film." Physical Review B 60 (20): 14422.
    [17] Dexter, D. L. (1953). "A theory of sensitized luminescence in solids." The Journal of Chemical Physics 21 (5): 836-850.
    [18] Suzuki, H. and S. Hoshino (1996). "Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes." Journal of Applied Physics 79 (11): 8816-8822.
    [19] Wang, Q., et al. (2019). "High-efficiency organic light-emitting diodes with exciplex hosts." Journal of Materials Chemistry C 7 (37): 11329-11360.
    [20] Van Slyke, S. A., et al. (1996). "Organic electroluminescent devices with improved stability." Applied physics letters 69 (15): 2160-2162.
    [21] Féry, C., et al. (2005). "Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes." Applied physics letters 87 (21): 213502.
    [22] Forrest, S. R., et al. (2003). "Measuring the efficiency of organic light‐emitting devices." Advanced Materials 15 (13): 1043-1048.
    [23] Wang, M., et al. (2019). "Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing High‐Efficiency Exciplex Light‐Emitting Diodes." Advanced Materials 31 (46): 1904114.
    [24] Wen-yan, L., et al. (2020). "Preparation of Highly-efficient Tandem OLED Based on B3PyMPM: Cs." Acta Photonica Sinica 49 (1): 123003.
    [25] Deng, Y.-H., et al. (2014). "The role of charge generation layers in the operational stability of tandem organic light-emitting diodes." Journal of Materials Chemistry C 2 (11): 1982-1989.
    [26] Chang, C.-H., et al. (2013). "Aligned energy-level design for decreasing operation voltage of tandem white organic light-emitting diodes." Thin Solid Films 548: 389-397.
    [27] Jiao, B., et al. (2013). "Tandem organic light‐emitting diodes with an effective nondoped charge‐generation unit." physica status solidi (a) 210 (12): 2583-2587.
    [28] Zhou, D.-Y., et al. (2014). "Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant." Applied physics letters 105 (8): 132_131.
    [29] Dong, S.-C., et al. (2017). "Chemical degradation mechanism of TAPC as hole transport layer in blue phosphorescent OLED." Organic Electronics 42: 379-386.
    [30] Li, Y., et al. (2019). "Creation of efficient blue aggregation-induced emission luminogens for high-performance nondoped blue OLEDs and hybrid white OLEDs." ACS applied materials & interfaces 11 (19): 17592-17601.
    [31] Yuan, J., et al. (2019). "High efficiency organic light-emitting diodes based on HAT-CN/TAPC heterojunction charge generation layer as charge injectors." Semiconductor Science and Technology 34 (10): 105010.
    [32] Zhou, D.-Y., et al. (2014). "Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts." Applied physics letters 105 (15): 159_151.
    [33] Chiba, T., et al. (2011). "Ultra-high efficiency by multiple emission from stacked organic light-emitting devices." Organic Electronics 12 (4): 710-715.
    [34] Chang, C.-C., et al. (2005). "Highly efficient white organic electroluminescent devices based on tandem architecture." Applied physics letters 87 (25): 253501.
    [35] Chen, Y., et al. (2011). "High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer." Applied physics letters 98 (24): 114.
    [36] Deng, Y.-H., et al. (2014). "Carrier behavior in special multilayer device composed of different transition metal oxide-based intermediate connectors." Applied physics letters 104 (22): 221104.
    [37] Kanno, H., et al. (2006). "White stacked electrophosphorescent organic light‐emitting devices employing MoO3 as a charge‐generation layer." Advanced Materials 18 (3): 339-342.
    [38] Wen-Tao, B., et al. (2013). "Tandem white organic light-emitting diodes adopting a C60: rubrene charge generation layer." Chinese Physics B 23 (1): 017803.
    [39] Wang, Q., et al. (2009). A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer, American Institute of Physics.
    [40] Chen, C.-W., et al. (2005). The mechanism and effective connecting structure for tandem OLEDs. Organic Light-Emitting Materials and Devices IX, International Society for Optics and Photonics.
    [41] Guo, T.-F., et al. (2009). "White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates." Optics express 17 (23): 21205-21215.
    [42] Wang, R.-B., et al. (2014). "HATCN-based charge recombination layers as effective interconnectors for tandem organic solar cells." ACS applied materials & interfaces 6 (17): 15604-15609.
    [43] Bao, Q., et al. (2010). "Electronic structures of MoO 3-based charge generation layer for tandem organic light-emitting diodes." Applied physics letters 97 (6): 172.
    [44] Zhou, D.-Y., et al. (2014). "The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices." Journal of Applied Physics 116 (22): 223708.
    [45] Ou, Q.-D., et al. (2015). "Photoemission spectroscopy study on interfacial energy level alignments in tandem organic light-emitting diodes." Journal of Electron Spectroscopy and Related Phenomena 204: 186-195.
    [46] Chen, Y.-Y., et al. (2021). "Investigation and optimization of the charge generation layer (CGL) in tandem OLEDs using Taguchi’s orthogonal arrays and nondestructive capacitance-voltage (CV) measurements." Synthetic Metals 274: 116713.
    [47] Cai, M., et al. (2018). "Unveiling the role of langevin and Trap-Assisted recombination in long lifespan OLEDs employing thermally activated delayed Fluorophores." ACS applied materials & interfaces 11 (1): 1096-1108.
    [48] Liao, L.-S., et al. (2008). "Tandem organic light‐emitting diode using hexaazatriphenylene hexacarbonitrile in the intermediate connector." Advanced Materials 20 (2): 324-329.
    [49] Yook, K. S., et al. (2010). "Highly Efficient p‐i‐n and Tandem Organic Light‐Emitting Devices Using an Air‐Stable and Low‐Temperature‐Evaporable Metal Azide as an n‐Dopant." Advanced Functional Materials 20 (11): 1797-1802.
    [50] Ding, L., et al. (2014). "Lithium hydride doped intermediate connector for high-efficiency and long-term stable tandem organic light-emitting diodes." ACS applied materials & interfaces 6 (20): 18228-18232.
    [51] Wu, Y.-L., et al. (2014). "Highly efficient tandem organic light-emitting devices utilizing the connecting structure based on n-doped electron-transport layer/HATCN/hole-transport layer." Applied optics 53 (22): E1-E6.
    [52] Dai, Y., et al. (2015). "Highly efficient and stable tandem organic light-emitting devices based on HAT-CN/HAT-CN: TAPC/TAPC as a charge generation layer." Journal of Materials Chemistry C 3 (26): 6809-6814.
    [53] Sun, H., et al. (2015). "Interconnectors in tandem organic light emitting diodes and their influence on device performance." IEEE Journal of Selected Topics in Quantum Electronics 22 (1): 154-163.
    [54] Chang, Y.-W., et al. (2016). "A versatile ferrocene-containing material as a p-type charge generation layer for high-performance full color tandem OLEDs." Chemical Communications 52 (99): 14294-14297.
    [55] Xu, T., et al. (2017). "Highly simplified tandem organic light-emitting devices incorporating a green phosphorescence ultrathin emitter within a novel interface exciplex for high efficiency." ACS applied materials & interfaces 9 (12): 10955-10962.
    [56] Chen, A., et al. (2019). "Remarkable enhancement of efficiencies for red, green, and blue tandem phosphorescent organic light-emitting diodes by utilizing a non-doped photovoltaic-type charge generation unit." Japanese journal of applied physics 58 (7): 070904.
    [57] Lai, Y.-N., et al. (2019). "Highly efficient flexible organic light-emitting diodes based on a high-temperature durable mica substrate." Organic Electronics 75: 105442.
    [58] Wen-yan, L., et al. (2020). "Preparation of Highly-efficient Tandem OLED Based on B3PyMPM: Cs." Acta Photonica Sinica 49 (1): 123003.
    [59] Yuan, J., et al. (2020). "Highly efficient charge generation and injection in HAT-CN/TAPC heterojunction for high efficiency tandem organic light-emitting diodes." Organic Electronics 83: 105745.

    QR CODE