簡易檢索 / 詳目顯示

研究生: 郭宏達
Hung-ta Kuo
論文名稱: 適應性動態調整競爭視窗強化IEEE 802.11e網路的語音服務
Adaptively Dynamic Tuning of the Contention Window for Enhanced Voice Service in IEEE 802.11e Networks
指導教授: 陳漢宗
Hann-Tzong Chern
口試委員: 鄭瑞光
Ray-Guang Cheng
黎碧煌
Bih-Hwang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 82
中文關鍵詞: 競爭視窗調整動態無線網路語音
外文關鍵詞: dynamic, contention window, 802.11e, 802.11, WLAN, voice
相關次數: 點閱:141下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,IEEE 802.11e無線區域網路已成為寬頻無線接取盛行技術之一環。無線區域網路之所以普及,是因為具備容易建置與無線用戶端設備多元化等優點。而在無線區域網路的應用上,趨勢顯示在無線網路上使用網路電話等的即時服務的需求將與日俱增。有鑑於愈多人利用無線區域網路做為即時語音通話的傳輸技術,如何提供具有對時間延遲敏感度高的即時語音通話服務使其有良好的通訊品質就成為一個很重要的研究議題。
    本研究試圖提出一個加強IEEE 802.11e競爭視窗的機制,來改善在無線區域網路上傳輸即時語音訊務的效能,我們稱這個方法為適應性動態調整競爭視窗機制。本方法使用預設競爭視窗的最小值及最大值(CWmin[AC]及CWmax[AC])、存取點所連線工作站的數量及週期性計算的平均碰撞率等做為參數,結合三個程序「初始選擇CWmin[AC]及CWmax[AC]的處理」、「傳輸發生碰撞後競爭視窗(CW[AC])的處理」及「傳送成功後競爭視窗(CW[AC])的處理」來適應網路的負載情況而動態調整競爭視窗的大小。
    本研究使用NCTUns 6.0來模擬與驗證所提出的方法,並與標準的增強分散式通道存取機制就傳送語音服務做效能的評估比較。結果顯示所提出的方法於網路呈現高負載的情況時,效能評估項目均優於標準的增強分散式通道存取機制,傳輸量平均可提升26%,存取延遲時間平均可降低49%,碰撞率平均可降低59%,通道使用率平均可增加26%。故本研究所提出的方法能充份地反應網路的負載現況,減少傳輸碰撞的機會,有效地提升無線網路的傳輸效能。


    In recent years, IEEE 802.11e Wireless Local Area Networks (WLANs) have emerged as one of the prevailing technologies for the broadband wireless access. WLANs have become popular due to ease of installation and the increase popularity of wireless clients. WLANs are increasing finding applications that include real time traffic like Voice over IP . The emerging usage of WLANs for real-time applications like voice transmission services calls for intensive research efforts to address the Quality of Services (QoS) issues to cope with the delay-sensitive needs of real-time voice transmission services.
    This research seeks to sketch the enhancement of contention window mechanism of IEEE 802.11e to improve the efficiency of real-time voice transmission over WLANs. We propose the mechanism of adaptively dynamic tuning of the contention windows for enhanced voice services over IEEE 802.11e WLANs. The parameters used in our proposed method include CWmin[AC], CWmax[AC], the amount of QoS station with associated access point, and the periodically calculated average collision rate of QoS station during transmission. We propose three mechanisms to dynamically adjust the size of contention window to cope with the traffic loads including the mechanism of initial selection of CWmin[AC] and CWmax[AC], the mechanism of CW[AC] after the collision, and the mechanism of CW[AC] after the success of transmission.
    We use NCTUns 6.0 to simulate and validate our proposed method. We compare the performance of voice transmission over WLANs of our proposed method with the standard enhanced distribution channel access (EDCA) mechanism. The results indicate that during high traffic loads, the performance of our proposed method is better than EDCA by 26% higher in throughput, 49% lower in access delay time, 59% lower in collision rate, and 26% higher in channel utilization. We conclude that our proposed method is found to enhance the network performance by increasing the overall system throughput and achieving more acceptable quality in terms of delay time and collision rate.

    目錄 第一章緒論6 1.1研究動機6 1.2研究簡介4 1.3論文架構5 第二章背景知識7 2.1WLAN的基本元件7 2.2WLAN的網路類型9 2.2.1中控型網路10 2.2.2獨立型網路13 2.3WLAN的網路服務13 2.3.1傳輸系統服務14 2.3.2工作站服務15 2.4WLAN的連線作業15 2.4.1掃描及加入網路16 2.4.2身份驗證19 2.4.3連線程序19 2.5802.11 MAC21 2.5.1訊框間隔21 2.5.2分散式協調功能通道存取機制23 2.6802.11E MAC29 2.6.1服務品質29 2.6.2仲裁訊框間隔30 2.6.3增強分散式通道存取機制32 第三章相關研究35 3.1效能評估35 3.2改善傳送語音封包的效能37 3.3適應性調整競爭視窗38 第四章提出改善的方法43 4.1WLAN傳送語音的問題43 4.2已提出改進的研究44 4.3提出的方法46 4.3.1初始選擇CWmin[AC]及CWmax[AC]的處理47 4.3.2傳輸發生碰撞後CW[AC]的處理50 4.3.3傳送成功後CW[AC]的處理54 4.4演算法55 第五章效能分析57 5.1模擬模型57 5.2效能比較60 5.2.1傳輸量60 5.2.2存取延遲時間61 5.2.3碰撞率62 5.2.4通道使用率63 第六章結論65 參考文獻68

    參考文獻
    [1] IEEE Standard 802.11, “IEEE Standard for Information Technology- Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks - Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications”, IEEE. (2007)
    [2] ITU-T Recommendation G.1010, “Series G: Transmission Systems and Media, Digital Systems and Networks. Quality of service and performance. End-user Multimedia QoS Categories”, ITU-T. (2001).
    [3] IEEE Standard 802.1D, “IEEE Standard for Local and Metropolitan Area Networks Media Access Control (MAC) Bridges”, IEEE. (2004).
    [4] ITU-T Recommendation G.114, “Series G: Transmission Systems and Media, Digital Systems and Networks. International Telephone Connections and Circuits – General Recommendations on the Transmission Quality for an Entire International Telephone Connection. One-way Transmission Time”, ITU-T. (2003).
    [5] Ferre, P. et al., "Throughput Analysis of IEEE 802.11 and IEEE 802.11e MAC," Proceedings of the IEEE Conference on Wireless Communications and Networking, pp. 783-788 (2004).
    [6] Kanthali, M., Gaiwak, A., and Vyavahare, P. D., "Performance Comparison of Contention-Based Channel Access Mechanism of IEEE 802.11 and 802.11e," Proceedings of the 7th IEEE International Conference on Computer and Information Technology, pp. 503-510 (2007).
    [7] Choi, S. et al., "IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation," Proceedings of the IEEE International Conference on Communications, pp. 1151-1156 (2003).
    [8] Davcevski, M. and Janevski, T., "Analysis of IEEE 802.11e QoS in Multimedia Environment," Proceedings of the 7th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services, pp. 45-48 (2005).
    [9] Bianchi, G., Tinnirello, I., and Scalia, L., "Understanding 802.11e Contention-based Prioritization Mechanisms and Their Coexistence with Legacy 802.11 Stations," IEEE Network, Vol. 19, pp. 28-34 (2005).
    [10] Hiraguri, T. et al., "Novel Multiple Access Protocol for Voice over IP in Wireless LAN," Proceedings of the 7th International Symposium on Computers and Communications, pp. 517-523 (2002).
    [11] Abu-Tair, M. I. et al., "Adaptive Medium Access Control for VoIP Services in IEEE 802.11 WLANs," Proceedings of the 4th IEEE International Conference on Circuits and Systems for Communications, pp. 487-491 (2008).
    [12] Hole D. P. and Tobagi, F. A. "Capacity of an IEEE 802.11b wireless LAN supporting VoIP," Proceedings of the IEEE International Conference on Communications, pp. 196-201 (2004).
    [13] Liang, H.-M. et al., "QoS Support over IEEE 802.11e in Multirate Networks," Proceedings of the 4th International Symposium on Wireless Pervasive Computing, pp. 1-5 (2009).
    [14] Jun, L. et al., "A Novel Adaptively Dynamic Tuning of the Contention Window (CW) for Distributed Coordination Function in IEEE 802.11 Ad hoc Networks," Proceedings of the International Conference on Convergence Information Technology, pp. 290-294 (2007).
    [15] Scarpa, V. et al., "Adaptive techniques to Guarantee QoS in a IEEE 802.11 Wireless LAN," Proceedings of the 59th IEEE Vehicular Technology Conference, pp. 3014-3018 (2004).
    [16] Naoum-Sawaya, J. et al., "Adaptive approach for QoS Support in IEEE 802.11e Wireless LAN," Proceedings of the IEEE International Conference on Wireless And Mobile Computing, Networking And Communications, pp. 167-173 (2005).
    [17] Romdhani, L., Ni, Q., and Turletti, T., "Adaptive EDCF: Enhanced Service Differentiation for IEEE 802.11 Wireless Ad-hoc Networks," Proceedings of the IEEE Conference on Wireless Communications and Networking, pp. 1373-1378 (2003).
    [18] Jun, L., Zhang, X., and Han, X., "A Novel Dynamic Tuning of the Contention Window (CW) for IEEE 802.11e Enhanced Distributed Control Function," Proceedings of the 4th International Conference on Networked Computing and Advanced Information Management, pp. 62-67 (2008).
    [19] Gannoune, L. and Robert, S., "Dynamic Tuning of the Contention Window Minimum (CWmin) for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad-hoc Networks," Proceedings of the 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 311-317 (2004).
    [20] Gannoune, L. , "A Non-linear Dynamic Tuning of the Minimum Contention Window (CWmin) for Enhanced Service Differentiation in IEEE 802.11 Ad-hoc Networks," Proceedings of the 63rd IEEE Vehicular Technology Conference, pp. 1266-1271 (2006).
    [21] Gannoune, L. et al., "Dynamic Tuning of the Maximum Contention Window (CWmax) for Enhanced Service Differentiation in IEEE 802.11 Wireless Ad-hoc Networks," Proceedings of the 60th IEEE Vehicular Technology Conference, pp. 2956-2961 (2004).
    [22] NCTUns. Retrieved from http://nsl.csie.nctu.edu.tw/nctuns.html (2010).
    [23] Chuah, C. and Katz, R. H., “Characterizing Packet Audio Streams from Internet Multimedia applications,” Proceedings of the IEEE International Conference on Communications, pp. 1199-1203 (2002).
    [24] ITU-T Recommendation P.59, “Artificial Conversational Speech,” ITU-T. (1993).
    [25] Cisco, Voice Over IP – Per Call Bandwidth Consumption. Retrieved from http://www.cisco.com/en/US/tech/tk652/tk698/technologies_tech_note09186a0
    080094ae2.shtml (2010).

    QR CODE