簡易檢索 / 詳目顯示

研究生: 朱國廷
Kuo-Ting Chu
論文名稱: 複合結構氧化鋅/氧化鋅鎢奈米柱之合成與場發射特性研究
The Synthesis and Field Emission Properties of Zinc Oxide/Zinc Tungstate Composite Nanorods
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張立
Li Chang
周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 79
中文關鍵詞: 氧化鋅複合結構場發射
外文關鍵詞: ZnO, composite nanorods, field emission
相關次數: 點閱:547下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  利用化學氣相沉積法以氣相-固相成長機制合成一維氧化鋅奈米結構時,如:奈米線、奈米尖錐或奈米柱,大多是利用活性低的貴金屬做為催化劑,如:金、鉑和銀,而本論文主要是利用活性較高的鎢金屬薄膜做為催化劑;在實驗中可發現利用鎢金屬薄膜做為催化劑550°C的溫度下進行化學氣相沉積法合成氧化鋅奈米柱時,由於鎢本身容易與成長環境中的反應氣體產生化學反應,因此實驗發現成長完成之後的氧化鋅奈米柱在其底部存在氧化鋅鎢的複合結構,而從拉曼光譜以及X光繞射圖形也可以驗證出氧化鋅鎢結構的存在,因此藉由鎢催化劑薄膜可成長出氧化鋅/氧化鋅鎢複合奈米柱。
  從光激發螢光光譜中可觀察到氧化鋅/氧化鋅鎢複合奈米柱的螢光峰值相對於氧化鋅奈米柱的螢光峰值有藍移的現象,除此之外,氧化鋅/氧化鋅鎢複合奈米柱的電子場發射特性之起始電場亦從單純只有氧化鋅奈米柱的3.95V/μm下降至3.55 V/μm,而增強因子為1839,相對氧化鋅奈米柱的1499也有明顯的提升。
  最後本實驗以10比1的比例混合氮氣與氧氣對氧化鋅/氧化鋅鎢複合奈米柱分別進行300°C、400°C 以及500°C的熱退火處理,從實驗結果可發現當熱退火溫度為400°C時可以有效使氧化鋅/氧化鋅鎢複合奈米柱電子場發射特性之起始電場與截止電場分別降低至3.05V/μm與4.05V/μm,增強因子也上升至2342。
  根據以上論述做出以下結論,本實驗主要是藉由鎢金屬催化薄膜得到了氧化鋅鎢複合結構,而得到氧化鋅/氧化鋅鎢複合奈米柱,並在合成複合奈米柱之後再利用400°C的條件進行熱退火處理,藉由這兩種方法皆可以提升氧化鋅奈米柱之電子場發射特性。


Synthesis of one-dimensional (1-D) zinc oxide nanostructures (ZnO) based on vapor-solid (V-S) mechanism by chemical vapor deposition (CVD) method usually utilize low active metal catalysts, such us gold (Au), platinum (Pt) and silver (Ag). In this work, the researcher utilizes tungsten thin film as the catalyst, the experiment reveals the synthesis of ZnO nanorods by chemical vapor deposition method at 550 °C which discovered the zinc tungstate nanostructures (ZnWO4) under ZnO nanorods by Raman spectrum and XRD patterns due to the tungsten catalyst were easily reactive with other gases in the furnace of the chemical vapor deposition system. Thus, ZnO/ZnWO4 composite nanorods were been synthesized by tungsten catalyst. Furthermore, the photoluminescence spectrum (PL) indicates the UV emission of ZnO/ZnWO4 composite nanorods possess the blue shift phenomenon compared to the pure ZnO nanorods. In addition, the field emission properties of ZnO/ZnWO4 composite nanorods includes a turn-on field (Eon) of 3.55 V/μm and a enhancement factor (β) of 1839, both better than found in ZnO nanorods without ZnWO4 nanostructures.
Finally, the research mixed nitrogen and oxygen with the ratio of 10:1 to annealing ZnO/ZnWO4 composite nanorods at 300 °C, 400 °C and 500 °C, respectively. The result shows the best temperature was 400 °C to enhance the field emission properties of ZnO/ZnWO4 composite nanorods. The field emission properties of the annealing ZnO/ZnWO4 composite nanorods at 400 °C includes a turn-on field of 3.05 V/μm, a threshold field (Eth) of 4.05 V/μm and a enhancement factor of 2342, both better than found in as-grown ZnO/ZnWO4 composite nanorods.

第一章 緒論...........................................................1 1.1 前言......................................................1 1.2 研究動....................................................2 第二章 文獻回顧.......................................................3 2.1 氧化鋅結構、性質與應用................................... 3 2.2 氧化鋅奈米柱文獻回顧......................................5 2.3 氧化鋅奈米柱合成機制......................................7 2.3.1 氣相-液相-固相成長機制(VLS mechanism)............7 2.3.2 氣相-固相成長機制(VS mechanism)...................8 2.4 氧化鋅奈米柱合成方法.....................................10 2.4.1 電鍍法..............................................10 2.4.2 水熱法(Hydrothermal method).......................11 2.4.3 脈衝雷射沉積法(Pulsed laser deposition, PLD)......13 2.4.4 化學氣相沉積法(Chemical vapor deposition, CVD)....14 2.4.5 金屬有機化學氣相沉積法(MOCVD).....................16 2.5 氧化鋅奈米材料之電子場發射特性...........................19 2.5.1 電子場發射理論......................................19 2.5.2 氧化鋅及其複合結構之電子場發射特性..................21 第三章 實驗方法.......................................................26 3.1 實驗流程.................................................26 3.2 氧化鋅奈米柱之製備.......................................26 3.2.1 玻璃基板前處理.........................................26 3.2.2 金催化劑及鎢催化劑之濺鍍...............................29 3.2.3 氧化鋅奈米柱之製備.....................................30 3.2.4 氧化鋅奈米柱之熱退火處理...............................31 3.3 實驗分析儀器之介紹.......................................32 3.3.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM)..32 3.3.2 X-ray繞射儀(X-ray diffractometer, XRD)...............33 3.3.3 顯微拉曼光譜儀(Micro-Raman spectroscopy).............34 3.3.4 光激發螢光光譜儀(Photoluminescence spectroscopy, PL).35 3.3.5 穿透式電子顯微鏡(Transmission electron microscopy, TEM) .......................................................36 第四章 結果與討論.....................................................37 4.1 不同金屬催化薄膜對氧化鋅奈米結構成長之影響...............37 4.2 ZnO nanorods與ZnO/ZnWO4 composite nanorods光激發螢光特性 探討......................................................54 4.3 ZnO nanorods與ZnO/ZnWO4 composite nanorods之電性與電子場 發射特性比較..............................................57 4.4 熱退火對ZnO/ZnWO4 composite nanorods結構之影響...........63 4.5 熱退火對ZnO/ZnWO4 composite nanorods場發射特性之影響.....68 第五章 結論與未來展望.................................................70 5.1 結論......................................................70 5.2 未來展望..................................................72 參考文獻 73

[1]Bin Xue, Ping Chen, Qi Hong, Jianyi Lin and Kuang Lee Tan, “Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes,” Journal of Materials Chemistry, Vol. 11, pp. 2378-2381 (2001)
[2]Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado, Wenjie Liang, Erik C. Garnett, Mark Najarian, Arun Majumdar and Peidong Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, Vol. 451, No. 7175, pp. 163-167 (2008)
[3]W. I. Park, D. H. Kim, S.-W. Jung and Gyu-Chul Yi, “Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods,” Applied Physics Letters, Vol. 80, No. 22, pp. 4232-4234 (2002)
[4]Sihai Chen and David L. Carroll, “Synthesis and Characterization of Truncated Triangular Silver Nanoplates,” Nano Letters, Vol. 2, No. 9, pp. 1003-1007 (2002)
[5]Goki Eda and Manish Chhowalla, “Graphene-based Composite Thin Films for Electronics,” Nano Letters, Vol. 9, No. 2, pp. 814-818 (2009)
[6]Guoqiang Zhang, Kouta Tateno, Haruki Sanada, Takehiko Tawara, Hideki Gotoh, and Hidetoshi Nakano, “Synthesis of GaAs nanowires with very small diameters and their optical properties with the radial quantum-confinement effect,” Applied Physics Letters, Vol. 95, No. 12, pp. 123104 (2009)
[7]Eun-Ha Kim and Byeong-Joo Lee, “Size Dependency of Melting Point of Crystalline Nano Particles and Nano Wires: A Thermodynamic Modeling,” Metals and Materials International, Vol. 15, No. 4, pp. 531-537 (2009)
[8]Jin He and Carmen M. Lilley, “Surface Effect on the Elastic Behavior of Static Bending Nanowires,” Nano Letters, Vol. 8, No. 7, pp. 1798-1802 (2008)
[9]Dmitri S. Golubev and Andrei D. Zaikin, “Quantum tunneling of the order parameter in superconducting nanowires,” Physical Review B, Vol. 64, No. 1, pp. 014504 (2001)
[10]Xiao-Mei Zhang, Ming-Yen Lu, Yue Zhang, Lih-J. Chen and Znong Lin Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film,” Advanced Materials, Vol. 21, No. 27, pp.2767-2770 (2009)
[11]Supratik Guha and Nestor A. Bojarczuk, “Ultraviolet and violet GaN light emitting diodes on silicon,” Applied Physics Letters, Vol. 72, No. 4, pp. 415-417 (1998)
[12]Stanley Cheung, Jong-Hwa Baek, Ryan P. Scott, Member, IEEE, Nicolas K. Fontaine, Francisco M. Soares, Xiaoping Zhou, Douglas M. Baney, and S. J. Ben Yoo, Fellow, IEEE, “1-GHz Monolithically Integrated Hybrid Mode-Locked InP Laser,” IEEE Photonics Technology Letters, Vol. 22, No. 24, pp. 17493-1795 (2010)
[13]Farahiyah Mustafa, Norfarariyanti Parimon, Abdul Manaf Hashim, Shaharin Fadzli Abd Rahmana, Abdul Rahim Abdul Rahman and Mohd Nizam Osman, “Design, fabrication and characterization of a Schottky diode on an AlGaAs/GaAs HEMT structure for on-chip RF power detection,” Superlattices and Microstructures, Vol. 47, No. 2, pp. 274-287 (2010)
[14]Pho Nguyen, Hou T. Ng and M. Meyyappan, “Catalyst Metal Selection for Synthesis of Inorganic Nanowires,” Advanced Materials, Vol. 17, No. 14, pp. 1773-1777 (2005)
[15]Z. Zhang, S. J. Wang, T. Yu and T. Wu, “Controlling the Growth Mechanism of ZnO Nanowires by Selecting Catalysts,” Journal of Physical Chemistry C, Vol. 111, No. 47, pp. 17500-17505 (2007)
[16]A. Mitra, R.K. Thareja, V. Ganesan, A. Gupta, P.K. Sahoo and V.N. Kulkarni, “Synthesis and characterization of ZnO thin films for UV laser,” Applied Surface Science, Vol. 174, No. 3-4, pp. 232-239 (2001)
[17]Elena Matei and Ionut Enculescu, “Electrodeposited ZnO films with high UV emission properties,” Materials Research Bulletin, Vol. 46, No. 11, pp. 2147-2154 (2011)
[18]Jin-Hong Lee, Kyung-Hee Ko and Byung-Ok Park, “Electrical and optical properties of ZnO transparent conducting films by the sol-gel method” Journal of Crystal Growth, Vol. 247, No. 1-2, pp. 119-125 (2003)
[19]N.W. Emanetoglu, C. Gorla, Y. Liu, S. Liang and Y. Lu, “Epitaxial ZnO piezoelectric thin films for SAW filters, ”Materials Science in Semiconductor Processing,” Vol. 2, No. 3, pp. 247-252 (1999)
[20]Zhong Lin Wang, “ZnO nanowire and nanobelt platform for nanotechnology, ”Materials Science and Engineering R, Vol. 64, No. 3-4, pp. 33-71 (2009)
[21]Sang-MoKoo, Monica D Edelstein, Qiliang Li, Curt ARichter and Eric M Vogel, “Silicon nanowires as enhancement-mode Schottky barrier field-effect transistors,” Nanotechnology, Vol. 16, No. 9, pp. 1482-1485 (2005)
[22]“J. Y. Son, S. J. Lim, J. H. Cho, W. K. Seong and Hyungjun Kim, “Synthesis of horizontally aligned ZnO nanowires localized at terrace edges and application for high sensitivity gas sensor,” Applied Physics Letters, Vol. 93, No. 5, pp. 053109 (2008)
[23]Young-Jin Choi, In-Sung Hwang, Jae-Gwan Park, Kyoung Jin Choi, Jae-Hwan Park and Jong-Heun Lee, “Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity,” Nanotechnology, Vol. 19, No. 9, pp. 095508 (2008)
[24]Mo Li, W. H. P. Pernice and H. X. Tang, “Broadband all-photonic transduction of nanocantilevers,” Nature Technology, Vol. 4, No. 6, pp. 377-382 (2009)
[25]William L. Hughes and Zhong L. Wang, “Nanobelts as nanocantilevers,” Applied Physics Letters, Vol. 82, No. 17, pp. 2886-2888 (2003)
[26]W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Applied Physics Letters, Vol. 75, No. 12, pp. 3129-3131 (1999)
[27]C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Applied Physics Letters, Vol. 81, No. 19, pp. 3648-3650 (2002)
[28]Niranjan S. Ramgir, Kittitat Subannajui, Yang Yang, Raphael Grimm, Rebecca Michiels and Margit Zacharias, “Reactive VLS and the Reversible Switching between VS and VLS Growth Modes for ZnO Nanowire Growth,” The Journal of Physical Chemistry C, Vol. 114, No. 23, pp. 10323-10329 (2010)
[29]H Y Dang, J Wang and S S Fan, “The synthesis of metal oxide nanowires by directly heating metal samples in appropriate oxygen atmospheres,” Nanotechnology, Vol. 14, No. 7, pp. 738-741 (2003)
[30]Y. Li, G. W. Meng, L. D. Zhang and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence Properties,” Applied Physics Letters, Vol. 76, No. 15, pp. 2011-2013 (2000)
[31]Changhong Liu, Juan Antonio Zapien, Yuan Yao, Xiangmin Lifshitz and Shuit Tong Lee, “High-Density, Ordered Ultraviolet Light-Emitting ZnO Nanowire Arrays,” Advanced Materials, Vol. 15, No. 10, pp. 838-841 (2003)
[32]Ye Sun, D. Jason Riley, and Michael N. R. Ashfold, “Mechanism of ZnO Nanotube Growth by Hydrothermal Methods on ZnO Film-Coated Si Substrates,” Journal of Physicals Chemistry B, Vol. 110, No. 31, pp. 15186-15192 (2006)
[33]Ke Yu, Zhengguo Jin, Xiaoxin Liu, Juan Zhao and Junyi Feng, “Shape alterations of ZnO nanocrystal arrays fabricated from NH3•H2O solutions,” Applied Surface Science, Vol. 253, No. 8, pp.4072-4078 (2007)
[34]Gareth M. Fuge, Tobias M.S. Holmes and Michaell N.R. Ashfold, “Ultrathin aligned ZnO nanorods arrays grown by a novel diffusive pulsed laser deposition method,” Chemical Physics Letters, Vol. 479, No. 1-3, pp. 125-127 (2009)
[35]M. Siegert, W. Zander, J. Lisoni, J. Schubert and Ch. Buchal, “Off-axis pulsed laser deposition system for epitaxial oxide growth on substrates up to 2 inches in diameter,” Applied Physics A Materials Science & Processing, Vol. 69, No. 7, pp. S779-S781 (1999)
[36]Pu Xian Gao and Zhong L. Wang, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process,” The Journal of Physics Chemistry B, Vol. 108, No. 23, pp. 7534-7537 (2004)
[37]A. Umar, S.H. Kim, Y.-S. Lee, K.S. Nahm and Y.B. Hahn, “Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties,” Journal of Crystal Growth, Vol. 282, No. 1-2, pp. 131-136 (2005)
[38]R. Triboulet and Jacques Perrière, “Epitaxial growth of ZnO films,” Progress in Crystal Growth and Characterization of Materials, Vol. 47, No. 2-3, pp. 65-138 (2003)
[39]Woong Lee, Min-Chang Jeong and Jae-Min Myoung, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapor deposition (MOCVD) and thermal evaporation,” Acta Materialia, Vol. 52, No. 13, pp. 3949-3957 (2004)
[40]R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 119, No. 781, pp.173-181 (1928)
[41]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58 (1991)
[42]Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” Applied Physics Letters, Vol. 83, No. 1, pp. 144-146 (2003)
[43]Farid Jamali Sheini, Dilip S. Jong, Mahendra A. More, Jai Singh and O.N. Srivasatva, “Low temperature growth of aligned ZnO nanowires and their application as field emission cathodes,” Materials Chemistry and Physics, Vol. 120, No. 2-3, pp. 691-696 (2010)
[44]Si Woo Kang, S. K. Mohanta, Young Yi Kim and Hyung Koun Cho, “Realization of Vertically Well-Aligned ZnO:Ga Nanorods by Magnetron Sputtering and Their Field Emission Behavior,” Crystal Growth & Design, Vol. 8, No. 5, pp. 1458-1460 (2008)
[45]L Liao, J C Li, D F Wang, C Liu, C S Liu, Q Fu and L X Fan, “Field emission property improvement of ZnO nanowires coated with amorphous carbon and carbon nitride films,” Nanotechnology, Vol. 16, No. 6, pp. 985-989 (2005)
[46]Chien-Sheng Huang, Chun-Yu Yeh, Yung-Huang Chang, Yi-Min Hsieh, Chien-Yeh Ku and Quan-Ting Lai, “Field emission properties of CNT-ZnO composite materials,” Diamond & Related Materials, Vol. 18, No. 2-3, pp. 452-456 (2009)
[47]Wei Tao Zheng, Yong Min Ho, Hong Wei Tian, Mao Wen, Jun Lei Qi and Ying Aai Li, “Field Emission from a Composite of Graphene Sheets and ZnO Nanowires,” The Journal of Physical Chemistry C, Vol. 113, No. 21, pp. 9164-9168 (2009)
[48]Richard L. McCreey, Raman Spectroscopy for Chemical Analysis, John Wiley and Sons, NY, pp. 1-5 (2000)
[49]Ramon Cuscó, Esther Alarcón-Lladó, Jordi Ibáñez, Luis Artús, Juan Jiménez, Buguo Wang and Michael J. Callahan, “Temperature dependence of Raman scattering in ZnO,” Physical Review B, Vol. 75, No. 16, pp. 165202 (2007)
[50]H. Wang, F. D. Medina, Y. D. Zhou and Q. N. Zhang, “Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals,” Physical Review B, Vol. 45, No. 18, pp. 10356-10362 (1992)
[51]B. O. Loopstra and H. M. Rietveld, “Further refinement of the structure of WO3,” Acta Crystallographica Section B, Vol. 25, No. 7, pp.1420-1421 (1969)
[52]Erika Widenkvist, Ronald A. Quinlan, Brian C. Holloway, Helena Grennberg and Ulf Jansson, “Synthesis of Nanostructured Tungsten Oxide Thin Films,” Crystal Growth & Design, Vol. 8, No. 10, pp. 3750-3753 (2008)
[53]Masamichi Tsuboi, “Optically Active Lattice Vibrations of Zinc Blende Type and Wurtzite Type Crystals,” Journal of Chemical Physics, Vol. 40, No. 5, pp. 1326-1335 (1964)
[54]Jinhong Bi, Ling Wu, Zhaohui Li, Zhengxin Ding, Xuxu Wang and Xianzhi Fu, “A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles,” Journal of Alloys and Compounds, Vol. 480, No. 2, pp. 684-688 (2009)
[55]K.J. Lethy, D. Beena, R. Vinod Kumar, V.P. Mahadevan Pillai, V. Ganesan and Vasant Sathe, “Structural, optical and morphological studies on laser ablated nanostructured WO3 thin films,” Applied Surface Science, Vol. 254, No. 8, pp. 2369-2376 (2008)
[56]Herbert B. Michaelson, “The work function of the elements and its periodicity,” Journal of Applied Physics, Vol. 48, No. 11, pp. 4729-4733 (1977)
[57]J. B. You, X. W. Zhang, P. F. Cai, J. J. Dong, Y. Gao, Z. G. Yin, N. F. Chen, R. Z. Wang and H. Yan, “Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment,” Applied Physics Letters, Vol. 94, No. 26, pp. 262105 (2009)
[58]E. Cazzanellia, L. Papalinoa, A. Pennisib and F. Simoneb, “Spatial variation of structural order in sputtered WO3 films,” Electrochimica Acta, Vol. 46, No. 13-14, pp. 1937-1944 (2001)

QR CODE