簡易檢索 / 詳目顯示

研究生: 黃健銘
Cheng-ming Huang
論文名稱: 高導電活化電極應用於陽極支撐型固態氧化物燃料電池
Development of a highly ionic conductivity anode for an anode-supported Solid Oxide Fuel Cell design
指導教授: 周振嘉
Chen-Chia Chou
口試委員: 郭東昊
Dong-Hau Kuo
鄭逸琳
Yih-Lin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 107
中文關鍵詞: 固態氧化物燃料電池陽極支撐活化陽極
外文關鍵詞: Solid Oxide Fuel Cell, anode-supported, active layer
相關次數: 點閱:179下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了提升陽極支撐型固態氧化物燃料電池的陽極之催化活性與離子導電,40wt.%高離子導共摻雜釔穩定氧化鋯(Zr0.92Y0.155Mg0.005O2.0775,YMSZ)混合60wt.%氧化鎳開發之新型陽極Ni-Zr0.92Y0.155Mg0.005O2.0775 (Ni-YMSZ)置入於常用陽極與電解質之間當作活化陽極層以降低陽極極化阻抗。AC 阻抗圖譜技術用以檢視界面活性及陽極微觀所造成的信號,鐵弗曲線分析和功率密度測量分別用來觀察三相點之電化學反應與檢驗實際燃料電池轉換化學能為電能的效率。
本實驗利用刮刀成型手法製作電解質和陽極,並將陰極網印在電解質和陽極共燒之後的電解質表面。SEM顯示刮刀成型製備陽極支撐層、活化陽極層與電解質,網印之陰極在陽極支撐半電池(Ni-YSZ / Ni-YMSZ / YSZ / Pt-YSZ )共燒1350℃一小時,並於20%H2+80%N2溫度800℃持溫2小時下還原得到電解質緻密與電極多孔之要求,而白金陰極、電解質(YSZ)、活化陽極層(Ni-YMSZ)、陽極支撐層 (Ni/YSZ)之間接合良好,無分層或剝落現象。陽極陶瓷離子導體與金屬電子導體呈現均勻的網絡狀分布,顯示了良好的微觀形貌。
從交流阻抗圖中的極化電阻(Rp)結果指出,添加活化陽極層之陽極在800℃下擁有較低的極化電阻(0.69 ohm-cm2),較常用陽極能夠降低界面之極化損失,此結果解釋添加高離子導之活化陽極層,確實有降低電極在電解質與燃料間的極化損失。在相同氣氛(40%H2-60%N2)中分析鐵弗曲線,添加活化層的陽極在800℃之交換電流密度(0.038 A/cm2,log i0)值明顯較常用陽極要高。由此可知陽極添加活化層除了降低極化阻抗,更提升了電極對燃料氣氛下的催化能力。對照發現交換電流密度(log i0)與極化電阻(Rp)具有相依性,較低的極化損失讓帶電粒子(O2-與e-)在陽極與界面(陽極與電解質)容易傳遞,使得三相點催化能力提升,並釋放出更多電子。
本研究在40%H2+60%N2 流量100sccm的燃料氣氛,陽極支撐含活化層半電池 (Ni-YSZ / Ni-YMSZ / YSZ / Pt-YSZ )於800℃最大功率密度為98.49mW/cm2大於陽極支撐半電池(Ni-YSZ / YSZ / Pt-YSZ )之功率密度87.68 mW/cm2。而陽極支撐含活化層單電池陰極搭配LSCF-YSZ複合陰極 (Ni-YSZ / Ni-YMSZ / YSZ / LSCF-YSZ) 於800℃功率密度可提升至135.71mW/cm2,依然優於陽極支撐無活化層單電池(Ni-YSZ / YSZ / LSCF-YSZ )之功率密度110.73 mW/cm2。因此陽極支撐型電池若添加陽極活化層將可用來提高SOFC於高、中溫的工作效率。這個製程在未來可應用於多個單電池疊合成的電池堆( cell stack ) 的裝置來產生高功率輸出。


For enhancing the catalytic activity and ionic conductivity of anode, yttria and magnesium oxide co-doped zirconia electrolyte Zr0.92Y0.155Mg0.005O2.0775 modified with 60wt% nickel particle (Ni) was applied to be a active layer coating at the interface between Ni-YSZ traditional anode and YSZ electrolyte to decrease the polarization resistance. AC impedance spectroscopy technique was adopted to check interfacial property and anode structure, Tafel curve analysis was used to observe the performance of electrochemical reaction at the TPB’s and power density measurement was used to check the efficiency of the fuel cell in converting chemical energy into electrical energy.
Electrolyte and anode thick films were successfully fabricated using tape casting technique and co-firing of electrolyte and anode. Microstructure analysis using SEM pictures shows that the co-sintering of anode supported the half cell at 1350℃for 1h had a dense electrolyte and anode/anode active layer with uniform distribution of ionic conducting YSZ/YMSZ particles and catalytic Ni particles, sufficient porosity and homogeneous network structure. The interfacial property between different components of the half cell was improved significantly by using co-sintering electrolyte, anode, anode active layer, cathode.
Experimental results show that the polarization resistance of traditional anode, Ni-YSZ, was reduced from 1.79 Ω-cm2 to 0.69Ω-cm2 by adding a active layer, Ni-YMSZ, at 800℃, because of increasing the amount of triple phase boundary (TPB) and decreasing of activation energy of oxygen ion migration in YSZ was observed by modifying appropriate elements to YSZ. The catalytic activity of anode with an active layer correlated with the value of exchange current density (logi0) identified from Tafel plots under 40% H2 condition. The exchange current densities of anode with an active layer are higher than that of Ni-YSZ at 800oC. Therefore the catalytic activity of anode depends on the ionic conductivity of co-doping zirconia in anode with an active layer. Besides, it is found that there are some correlations between logi0 and Rp, increasing of exchange current density and decreasing of polarization loss were observed due to mass transfer of oxygen ion and charge transfer easy in anode with an active layer.
The efficiency of the half cell in converting the chemical energy in to electrical energy was estimated by measuring the power density using 40%H2+60%N2 (100 sccm) as fuel and air as oxidant. Anode-supported with an active layer half cell has shown the power density of 98.49 mW/cm2 at 800℃which is much higher than non active layer half cell of 87.68 mW/cm2. Power density of Single cell with an active layer reached 135.71 mW/cm2. Hence it can be concluded that the anode supported unit cell containing Ni-YMSZ anode can be used to develop high efficiency unit cells for high and intermediate temperature fuel cell applications. This process can also be applied to develop SOFC stack with multiple unit cells for high power output in future.

中文摘要 I Abstract III 第一章 緒論 1 第二章 文獻回顧 5 2-1 燃料電池簡介 5 2-2 燃料電池發展概況 7 2-3固態氧化物燃料電池簡介 8 2-4固態氧化物燃料電池之電解質 10 2-4-1螢石結構的電解質 10 2-5固態氧化物燃料電池之陽極 16 2-5-1陽極材料基本要求 16 2-6固態氧化物燃料電池之電極極化 21 2-6-1活化極化 25 2-6-2濃度極化 26 2-7陰極材料系統 28 2-7-1陰極材料之選用 29 2-8固態氧化物燃料電池之單電池設計 31 2-8-1漿料的組成 33 2-8-2流變性 34 第三章 研究方法 37 3-1藥品種類與儀器規格表 37 3-2實驗流程圖 40 3-2-1陽極粉末製作流程 40 3-2-2複合陰極粉末製作流程 41 3-2-3陽極支撐型半電池製作及檢測 42 3-2-4陽極支撐型單電池製作及檢測 43 3-3粉末準備與製作 44 3-3-1電解質粉末準備 44 3-3-2陽極支撐體粉末準備 44 3-3-3陽極活化層粉末準備 44 3-3-4陰極膠體製備 45 3-4 粉末粒徑分析 47 3-5 陽極支撐半電池製作 47 3-5-1漿料配製 47 3-5-2黏度量測 47 3-5-3刮刀成形 47 3-5-4堆疊熱壓 49 3-5-5陽極、電解質共燒 49 3-5-6陰極膠體之網印 50 3-5-7陽極端白金電流蒐集層之網印 50 3-5-8半電池之還原 50 3-6 XRD成相性分析 51 3-7 SEM影像分析 51 3-8 EDS元素分布分析 52 3-9電極孔隙率分析 52 3-10熱重分析法(Thermogravimetry Analysis) 53 3-11試片的安裝與封裝 53 3-12交流阻抗之測量 54 3-12-1極化電阻(Polarization resistance)之測量 54 3-12-2 ASR計算活化能 56 3-13鐵弗曲線(Tafel plot)之測量 57 3-14功率密度之量測 59 第四章 結果與討論 60 4-1粒徑分析 60 4-2 XRD成相分析 61 4-3薄帶成型 64 4-4陽極薄帶燒結之TGA分析 66 4-5陽極與電解質於不同共燒溫度之微觀結構 67 4-6陽極支撐SOFC試片EDS成分分佈分析 71 4-7陽極支撐型SOFC半電池微觀結構 73 4-8電性研究 76 4-8-1交流阻抗之極化分析 76 4-8-2以阿瑞尼氏圖計算活化能 83 4-8-3鐵弗曲線 84 4-8-4極化曲線 86 4-9陽極支撐單電池 88 4-9-1複合陰極 88 4-9-2陽極支撐SOFC單電池微觀結構 93 4-9-3發電效益(Power density) 95 4-10纖維複合陰極 99 第五章 結論 101 未來展望 103 參考文獻 104 Fig. 2 - 1氧離子為導體之SOFC原理概念圖[3] 6 Fig. 2 - 2 ZrO2-Y2O3體系二元相圖[7] 11 Fig. 2 - 3在1000℃YSZ離子導率隨Y2O3含量的變化的曲線圖[8] 11 Fig. 2 - 4黑色球為氧離子導體,白色為電子導體,兩者接點即為三相點[26] 18 Fig. 2 - 5 (a)固定粒徑,但用漸層的方式改變孔隙率且越接近電解質孔隙率越小(b)固定孔隙率改變粒徑大小且越靠近電解質粒徑越小[29] 20 Fig. 2 - 6氫氣(PH2 )與水蒸氣(PH2O)經過陽極和氧氣(PO2)過陰極其分壓之變化(a) 陽極支撐(anode-supported cell) 與 (b) 陰極支撐(cathode-supported cell) [37] 27 Fig. 2 - 7鈣鈦礦結構 28 Fig. 2 - 8兩平板之間粘度變化 35 Fig. 3 - 1陽極粉末製作圖 40 Fig. 3 - 2複合陰極粉末製作圖 41 Fig. 3 - 3陽極支撐型半電池製作與分析流程圖 42 Fig. 3 - 4陽極支撐型單電池製作與分析流程圖 43 Fig. 3 - 5盛料槽 48 Fig. 3 - 6完成薄帶 48 Fig. 3 - 7共燒Ni-YSZ陽極、YSZ電解質之燒結曲線 49 Fig. 3 - 8陽極支撐電池各組成材料疊合示意圖 51 Fig. 3 - 9孔隙率分析SEM模擬圖 52 Fig. 3 - 10交流阻抗圖對應之電極內部反應機制[51] 56 Fig. 3 - 11以coreware軟體比對鐵弗曲線之陽極交換電流值 58 Fig. 3 - 12以coreware軟體比對極化曲線之斜率 59 Fig. 4 - 1 YSZ煆燒1300 oC並持溫2hr之XRD成相分析 62 Fig. 4 - 2 YMSZ煆燒1300℃並持溫2hr之XRD成相分析 62 Fig. 4 - 3 60wt.% NiO-40wt.% YSZ陽極支撐體經1350℃燒結並持溫1hr 之XRD 63 Fig. 4 - 4 60wt.% NiO-40wt.% YMSZ陽極膜經1350℃燒結並持溫1hr 之XRD 63 Fig. 4 - 5漿料真空除泡後之黏度對剪切速率作圖(a)電解質(b)陽極 65 Fig. 4 - 6自然陰乾完之電解質與陽極薄帶 65 Fig. 4 - 7陽極薄帶疊層熱壓後完成圖與燒結完後斷面OM圖 65 Fig. 4 - 8 TGA圖 66 Fig. 4 - 9 陽極表面之SEM,分別為1300 ℃-1hr (a)、(b),1350 ℃-1hr (c)、(d),1400 ℃-1hr (e)、(f) 69 Fig. 4 - 10陽極還原後表面之SEM,分別為1300 ℃-1hr (a)、(b),1350 ℃-1hr (c)、(d),1400 ℃-1hr (e)、(f) 70 Fig. 4 - 11共燒(a)1300℃,(b)1350℃,(c)1400℃電解質YSZ表面 70 Fig. 4 - 12(a) 為Ni晶粒之SEM、EDS分析;(b) 為Ni晶粒/YSZ晶粒邊緣之SEM、EDS分析;(c) 為YSZ晶粒之SEM、EDS分析 72 Fig. 4 - 13共燒結1350℃-1hr之斷面之SEM (a)、(c)由上而下分別是Pt-YSZ、YSZ、Ni-YSZ,(b)、(d)含活化陽極層共燒結斷面之SEM由上而下分別是Pt-YSZ、YSZ、Ni-YMSZ、Ni-YSZ 74 Fig. 4 - 14共燒結1350℃-1hr陽極表面於不同倍率的SEM,(a)、(c)Ni-YSZ陽極,(b)、(d)Ni-YMSZ陽極 75 Fig. 4 - 15 Ni-YSZ陽極支撐半電池在不同溫度之交流阻抗圖譜 79 Fig. 4 - 16 Ni-YSZ陽極支撐半電池添加Ni-YMSZ活化陽極層在不同溫度之交流阻抗圖譜 80 Fig. 4 - 17常用與添加活化陽極半電池之高頻(電荷轉移)ASR於500-650℃ 81 Fig. 4 - 18常用與添加活化陽極半電池之高頻(電荷轉移)ASR於700-800℃ 81 Fig. 4 - 19常用與添加活化陽極半電池之中低頻(氫氣擴散、吸附脫附)ASR於500-650℃ 82 Fig. 4 - 20常用與添加活化陽極半電池之中低頻(氫氣擴散、吸附脫附)ASR於700-800℃ 82 Fig. 4 - 21交流阻抗分析儀量測得到常用陽極支撐半電池與添加活化陽極層的整體極化電阻於500-800℃之阿瑞尼氏圖(Arrhenius plot) 83 Fig. 4 - 22 (a)常用陽極與(b)添加活化陽極層的陽極支撐半電池於500-800℃之Tafel 曲線 84 Fig. 4 - 23常用陽極與添加活化陽極層的陽極支撐半電池於500-800℃之log i0值曲線圖 85 Fig. 4 - 24常用陽極(a)與添加活化陽極層(b)的陽極支撐半電池於500-800℃之極化曲線圖 87 Fig. 4 - 25常用陽極與添加活化陽極層半電池在不同溫度的斜率 87 Fig. 4 - 26複合陰極薄膜斷面SEM圖,LSCF(82)為(a) & (c),LSCF(64)為(b) & (d) 90 Fig. 4 - 27複合陰極薄膜平面SEM圖,LSCF(82)為(a) & (c),LSCF(64)為(b) & (d) 91 Fig. 4 - 28 Pt / 8YSZ / LSCF-8YSZ電解質支撐三極式半電池之交流阻抗圖譜(a)600℃(b)700℃(c)800℃ 92 Fig. 4 - 29常用陽極支撐單電池陰極使用LSCF之(a)、(c)斷面、(e)、(g)陰極表面與複合陰極LSCF-YSZ(b)、(d)斷面、(f)、(h)陰極表面 94 Fig. 4 - 30陽極支撐半電池使用燃料成分40% H2+60% N2,流量100 sccm之功率密度(a)750℃、(b)800℃ 96 Fig. 4 - 31陽極支撐單電池使用燃料成分40% H2+60% N2,流量100 sccm之功率密度(a)700℃、(b)750℃、(c)800℃ 98 Fig. 4 - 32陽極支撐單電池搭配纖維複合陰極,(a)、(b) 纖維複合陰極平面,(c)、(d)斷面 100 Fig. 4 - 33陽極支撐單電池使用燃料成分40% H2+60% N2,流量100 sccm 搭配纖維複合陰極之功率密度 100 Table 2 - 1各種複合物加入氧化鈰的離子導電率[15] 14 Table 2 - 2鈣鈦礦結構氧化物組成與熱膨脹係數[46, 47] 30 Table 3 - 1電解質與陽極各氧化物原料之詳細資料 37 Table 3 - 2陰極各氧化物原料之詳細資料 37 Table 3 - 3薄帶漿料各原料之詳細資料 38 Table 3 - 4各實驗儀器之詳細資料 38 Table 4 - 1粉末粒徑表 60 Table 4 - 2陽極在不同燒結溫度下之孔隙率 71 Table 4 - 3由阿瑞尼氏圖計算各種試片之陽極活化能表 84 Table 4 - 4 (a)常用陽極與(b)添加活化陽極層的陽極支撐半電池於500-800℃下對應之log i0 85

1. 葉惠青. 能源政策白皮書. 第二篇 國際能源供需情勢 第一章 國際能源情勢 民國94年 12月].
2. Singhal, S.C., Solid oxide fuel cells: Status, challenges and opportunities. Industrial Ceramics, 2008. 28(1): p. 53-59.
3. Stambouli, A.B. and E. Traversa, Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Ricerca Scientifica-, 2002. 00133.
4. P.O'Hayer, R., et al., Fuel cell fundamentals. 2006, New York: John Wiley & Sons, INC.
5. 黃鎮江, 燃料電池. 2003, 台北市: 全華科技圖書.
6. Yashima, M., M. Kakihana, and M. Yoshimura, Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application. Solid State Ionics, 1996. 86-88(Part 2): p. 1131-1149.
7. R.A.Miller, J.L.Smiallek, and R.G.Garlik, Science and Technology of Zirconia, ed. A.H.h.a. L.W.Hobbs. Vol. Vol.3. 1981: American Ceramic Socrcty,Columbus,OH.
8. Ruh, R., et al., J. Am. Ceram. Soc., 1984. 67: p. p. C190.
9. Yamamoto, O., et al., Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics, 1995. 79: p. 137-142.
10. Ingel, R.P., et al., Science and technology of Zirconia II. Physical, microstructural, and thermomechanical properties of ZrO2 single crystals, ed. N. Claussen, M. Ruhle, and A.H. Heuer. Vol. 12. 1984): Clumbus.
11. Ingel, R.P., et al., Temperature dependence of strength and fracture toughness of ZrO2 single crystals. J. Am. Ceram. Soc., 1982. 65(9): p. C150-C152.
12. Michel, D., L. Mazerolles, and M.P.y. Jorba, Fracture of metastable tetragonal zirconia crystals. J. Mater. Sci. 18: p. 2618-2628
13. 許崴棋, 異價離子共摻雜對氧化鋯與氧化鈰之晶體結構與導電性質之影響. 民國94年6月, 台北: 台灣科技大學材料科技研究所碩士論文.
14. 羅文志, 氧空缺控制對氧化鋯離子導電率之研究. 民國95年7月, 台北: 台灣科技大學材料科技研究所碩士論文.
15. Minh, N.Q. and T. Takahashi, Science and Technology of Ceramic Fuel Cells. 1995: Elsevier.
16. Mogensen, M., N.M. Sammes, and G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics, 2000. 129(1-4): p. 63-94.
17. Lewis, G.S., et al., Effect of Co addition on the lattice parameter, electrical conductivity and sintering of gadolinia-doped ceria. Solid State Ionics, 2002. 152-153: p. 567-573.
18. Ou, D.R., et al., Microstructures and electrolytic properties of yttrium-doped ceria electrolytes: Dopant concentration and grain size dependences. Acta Materialia, 2006. 54(14): p. 3737-3746.
19. Marques, F.M.B. and L.M. Navarro, Performance of double layer electrolyte cells Part I: Model behavior. Solid State Ionics, 1996. 90(1-4): p. 183-192.
20. Du, Y. and N.M. Sammes, Fabrication of tubular electrolytes for solid oxide fuel cells using strontium- and magnesium-doped LaGaO3 materials. Journal of the European Ceramic Society, 2001. 21(6): p. 727-735.
21. Kimpton, J., et al., An investigation of the microstructure/electrical conductivity relationship in In2O3-substituted LSGM. Materials Research Bulletin, 2001. 36(3-4): p. 639-649.
22. L, S.E.J. and K. M., J. Electrochem. Soc., 1987. 134: p. 1047.
23. Kawada, T., et al., Solid State Ionics, 1992. 418: p. 53~56.
24. Lee, C.-H., et al., Microstructure and anodic properties of Ni/YSZ cermets in solid oxide fuel cells. Solid State Ionics, 1997. 98(1-2): p. 39-48.
25. 江志明, 固態氧化物燃料電池以高導電離子導體改良之新型陽極. 民國96年7月, 台灣科技大學材料科技研究所碩士論文,台北.
26. Ioselevich, A., A.A. Kornyshev, and W. Lehnert, Statistical geometry of reaction space in porous cermet anodes based on ion-conducting electrolytes: Patterns of degradation. Solid State Ionics, 1999. 124(3-4): p. 221-237.
27. Spacil, H.S., US Patent, in October 30,1964 modified Novenber 2,1967 ,granted March 31, 1970. 1970. p. 360
28. Carini, G.F., et al., Electrical conductivity, seebeck coefficient and defect chemistry of Ca-doped YCrO3. Solid State Ionics, 1991. 49: p. 233-243.
29. Ni, M., M.K.H. Leung, and D.Y.C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources, 2007. 168(2): p. 369-378.
30. Gaskell, D.R., Introduction to Thermodynamics of Materials. 1995: Taylor and Francis.
31. N. H. Anderson, K.C., M. A. Hackett, W. Hayes, M. T. Hutchings, J. E. Macdonald, and R. Osborn,, In Transport-Structure Relations in Fast Ion and Mixed Conductor. Denmark: p. 279.
32. E. C. Subbarao, N.C., M. Rühle, and A. H. Heuer (eds.), in Science and Technology of Zirconia II. J. Am. Ceram. Soc., 1981.
33. A. V. Virkar, J.C., C. W. Tanner, and J. W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics, 2000(131): p. 189.
34. J.P. Ouweltjes, F.P.F.v.B., P. Nammensma, G.M. Christie, and M.D.E. in: S.C. Singhal, Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells. (1999): The Electrochemical Society, Pennington, NJ.
35. E. N. Timofeeva, N.I.T., L. N. Drozdova, and O. A. Mordovin, Izv. Akad. Nauk SSSR, Neorg. Mater. 1969. 5(6): p. 1155-1156.
36. A. Jakobsson, D.S., and S. Seetharaman, Metall. Trans. B,. 1993. 6.
37. J. W. Kim, A.V.V., K. Z. Fung, K. Mehta, and S. C. Singhal, Electrochemical Behavior of Aluminum-Base Intermetallics Containing Iron. J. Electrochem. Soc., 1999(146): p. 69.
38. Takeda, Y., et al., Perovskite oxides for the cathode in solid oxide fuel cells. Electrochemistry, 2000. 68(10): p. 764-770.
39. 毛宗強, 燃料電池. 化學工業出版社(北京), 2005: p. 275-304.
40. Brant, M.C., et al., Electrical degradation of porous and dense LSM/YSZ interface. Solid State Ionics, 2006. 177(9-10): p. 915-921.
41. Lu, C., et al., LSM-YSZ cathodes with reaction-infiltrated nanoparticles. Journal of the Electrochemical Society, 2006. 153(6): p. 1115-1119.
42. Huang, Y., J.M. Vohs, and R.J. Gorte, SOFC cathodes prepared by infiltration with various LSM precursors. Electrochemical and Solid-State Letters, 2006. 9(5): p. 237-240.
43. Imanishi, N., et al., Impedance spectroscopy of perovskite air electrodes for SOFC prepared by laser ablation method. Solid State Ionics, 2004. 174(1-4): p. 245-252.
44. Yang, Z., et al., Evaluation of perovskite overlay coatings on ferritic stainless steels for SOFC interconnect applications. Journal of the Electrochemical Society, 2006. 153(10): p. 1852-1858.
45. Zhao, F., R. Peng, and C. Xia, LSC-based electrode with high durability for IT-SOFCs. Fuel Cells Bulletin, 2008. 2008(2): p. 12-16.
46. Jiang, S.P. and J.G. Love, Origin of the initial polarization behavior of Sr-doped LaMnO3 for O2 reduction in solid oxide fuel cells. Solid State Ionics, 2001. 138(3-4): p. 183-190.
47. Li, S., et al., Performances of Ba0.5Sr0.5Co0.6Fe0.4O3-δ-Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. Journal of Alloys and Compounds, 2008. 448(1-2): p. 116-121.
48. Song, J.-H., et al., Fabrication characteristics of an anode-supported thin-film electrolyte fabricated by the tape casting method for IT-SOFC. Journal of Materials Processing Technology, 2008. 198(1-3): p. 414-418.
49. Moreno, R., The Role of Slip Additives in tape casting technology: Part 1 Solvents and Dispersants. Laboratory Report, 1992. 71: p. 1521-1531.
50. Moreno, R., The Role of Slip Additives in tape casting technology: Part 2 Binder and Plasticizers. Laboratory Report, 1992. 71: p. 1647-1657.
51. SB, A., Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics, 2000. 135: p. 603.

QR CODE