簡易檢索 / 詳目顯示

研究生: 金怡伶
Yi-Ling Chin
論文名稱: 利用非富勒烯材料實現高性能且長期穩定的鈣鈦礦光感測器
High-Performance and Long-Term Stable Perovskite Photodetectors by Using Non-Fullerene Material
指導教授: 張志宇
Chih-Yu Chang
口試委員: 衛子健
Tzu-Chien Wei
劉振良
Cheng-Liang Liu
陳良益
Liang‑Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 121
中文關鍵詞: 鈣鈦礦光感測器非富勒烯材料陰極界面層
外文關鍵詞: perovskite photodetector, non-fullerene, cathode interlayer
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,有機-無機鹵化物鈣鈦礦光感測器由於製程簡單、成本低廉、高光電性能以及可撓曲等多重優勢,使越來越多研究團隊致力於鈣鈦礦光感測器之開發。而陰極界面層在光感測器中扮演著至關重要的角色,現今常見的陰極界面層為富勒烯衍生物,然而,其具有高成本、光熱穩定性不佳以及於高溫下易團聚等缺點,阻礙其廣泛應用性。而非富勒烯材料它不僅保留了富勒烯n型半導體之特性,還顯示出更優異的光熱穩定性,在商業化方面,其合成更加簡易且價格便宜,因此本篇將利用非富勒烯材料應用於鈣鈦礦光感測器探討其性能以及穩定度。
在本研究中,我們利用非富勒烯材料N,N'-bis[3-(dimethylamino)propyl] perylene-3,4,9,10-tetracarboxylic diimide(PDIN)做為陰極界面層實現了相當優異的光感測性能,然而,我們發現其元件之穩定度極差。此穩定性不佳歸因於當鈣鈦礦劣化時會產生離子缺陷,導致鈣鈦礦中的碘離子會游離至頂端銀電極,形成不導電的Ag-I,從而使元件的穩定度下降。為改善此問題,我們利用2,6-dibromo-N,N'-bis(2-ethylhexyl)-1,8:4,5-naphthalenetetracarboxdiimide(NDI-EH-Br2)分子成功抑制了元件中的不穩定性,由於NDI-EH-Br2分子周圍有許多強拉電子基,這促使分子中心的苯環極缺電子,藉此特性可捕捉由鈣鈦礦降解時游離出來之碘離子,從而提升元件之穩定度。此元件在未封裝的條件下,於大氣環境中174小時後其響應度幾乎沒有下降,而探測度仍保有初始值的55%,且在熱穩定度方面也表現得相當優異。最後,我們將NDI-EH-Br2最佳化,並探討兩種不同的界面修飾層PDIN與polyethylenimine(PEI)對於性能以及穩定度之影響。由結果得知若以PEI做為界面修飾層會有較差的元件性能與穩定度,這歸因於PEI中富含電子的胺基會做為親核試劑攻擊NDI-EH-Br2上的羰基,進而破壞NDI-EH-Br2分子中原有的分子內電荷轉移。
本研究以非富勒烯材料應用於鈣鈦礦光感測器開發了一種有效提高穩定度之方式,為後續發展高性能且長期穩定的非富勒烯鈣鈦礦光感測器提供了一個全新的策略。


More and more research workers are recently dedicated to development of perovskite photodetectors due to the advantages of organic-inorganic halide perovskites, such as simple process, low-cost, outstanding characteristics of photovoltaic, and flexible. In addition, the fullerene derivative is commonly apply to cathode interlayer (CIL) which plays an important role in photodetectors, however, it brings some shortcomings, such as high-cost, photothermal instability, and easily accumulation in high temperature, that may hinder its wide applicability. Instead, the non-fullerene materials not only remain the characteristics of n-type semiconductor of fullerene, but also demonstrate a more excellent photothermal stability. On the commercialization side, the synthesis of non-fullerene material is more simple and cheaper than fullerene material. Thus, we are going to study on the photodetection performance and stability of photodetectors by applying non-fullerene material to CIL.
In this study, we use a non-fullerene material, N,N'-bis[3-(dimethylamino)propyl] perylene-3,4,9,10-tetracarboxylic diimide (PDIN) as CIL to realize a quite excellent characteristic of photodetectors. However, we noticed the stability of device was really poor, resulting from the degradation of perovskite, then causing the iodide-ions diffusion to Ag electrode to form an insulation layer of AgI. In order to solve this problem, we utilize 2,6-dibromo-N,N'-bis(2-ethylhexyl)-1,8:4,5-naphthalenetetra carboxdiimide (NDI-EH-Br2) molecule as CIL due to the strong electron-withdrawing groups of NDI-EH-Br2, making lack of electrons on benzene in the center of molecular structure. By this fact, the NDI-EH-Br2 could capture the iodide-ions from degradation of perovskite, then improving the instability of device. The resulting device not only exhibited good photovoltaic stabilitys of negligible decreasing of responsivity and maintain 55% of initial value of detectivity after 174 hrs storage in ambient air condition without encapsulated condition, but also demonstrate excellent photothermal stability. Furthermore, we also optimize the process of NDI-EH-Br2 as CIL and discuss the influence of the characteristics and stabilities in different interface modification layer, PDIN and polyethylenimine (PEI). The result shows the poor characteristics and stabilities of device when applying PEI as interface modification layer, because the amine groups on PEI take a nucleophilic reaction with carbonyl groups on NDI-EH-Br2, destroying the original intramolecular charge transfer.
In summary, we demonstrate an effective way to improve stability by using non-fullerene materials as CIL perovskite photodetectors, providing a new strategy for developing high-performance and long-term stable non-fullerene perovskite photodetectors.

誌謝 I 摘要 II Abstract IV 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 4 2.1 鈣鈦礦 4 2.1.1 鈣鈦礦結構與光電特性 4 2.1.2 鈣鈦礦發展歷史 6 2.2 光感測器之性能分析 8 2.2.1 暗電流(dark current, Jd) 8 2.2.2 響應度(responsivity, R) 9 2.2.3 探測度(detectivity, D) 9 2.2.4 線性動態範圍(linear dynamic range, LDR) 10 2.2.5 噪聲等效功率(noise equivalent power, NEP) 10 2.3 鈣鈦礦光感測器 11 2.3.1 鈣鈦礦光感測器的機制原理 11 2.3.2 鈣鈦礦光感測器發展歷史 12 2.4 陰極界面層 18 第三章 實驗步驟與設計 22 3.1 實驗設計 22 3.2 元件製備 24 3.2.1 材料準備 24 3.2.2 基板清洗流程 24 3.2.3 鈣鈦礦前驅物溶液製備 24 3.2.4 光感測器元件製備 24 3.3 實驗分析儀器與原理 25 3.3.1 原子力顯微鏡(atomic force microscopy, AFM) 25 3.3.2 掃描式電子顯微鏡(scanning electron microscopy, SEM) 26 3.3.3 螢光光譜儀(photoluminescence, PL) 26 3.3.4 紫外光-可見光光譜儀(ultraviolet-visible spectroscopy, UV-Vis) 27 3.3.5 外部量子效率(external quantum efficiency, EQE) 28 3.3.6 傅立葉紅外線光譜儀(fourier transform infrared spectrometer, FT-IR) 28 3.3.7 凱爾文探針力顯微鏡(Kelvin probe force microscope, KPFM) 29 3.3.8 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 30 3.3.9 循環伏安法(cyclic voltammetry, CV) 31 3.3.10 實驗分析儀器之廠牌與型號 31 第四章 實驗結果與討論 33 4.1 鈣鈦礦主動層分析 33 4.1.1 XRD分析 33 4.1.2 表面形貌分析(AFM、SEM) 34 4.1.3 光學特性分析(UV、PL) 35 4.2 非富勒烯材料PDIN做為陰極界面層之鈣鈦礦光感測器 36 4.2.1 PDIN薄膜之表面形貌(AFM、SEM) 36 4.2.2 PDIN之光電特性分析 37 4.2.3 PDIN做為陰極界面層之鈣鈦礦光感測器的元件性能 41 4.2.4 PDIN做為陰極界面層之鈣鈦礦光感測器的元件穩定度 45 4.2.5 探討PDIN鈣鈦礦光感測器穩定度不佳之原因 47 4.3 非富勒烯材料NDI/PDIN做為陰極界面層之鈣鈦礦光感測器 51 4.3.1 NDI/PDIN薄膜之表面形貌 51 4.3.2 NDI之光電特性分析 53 4.3.3 NDI/PDIN做為陰極界面層之鈣鈦礦光感測器的元件性能 56 4.3.4 NDI/PDIN做為陰極界面層之鈣鈦礦光感測器的元件穩定度 58 4.3.5 探討NDI-EH-Br2抑制碘離子擴散之分析 64 4.3.6 NDI-EH-Br2/PDIN做為陰極界面層之光感測性能與熱穩定度 66 4.4 最佳化NDI-EH-Br2陰極界面層 70 4.4.1 不同條件下NDI-EH-Br2薄膜之表面形貌 70 4.4.2 不同條件下NDI-EH-Br2之元件性能 72 4.4.3 不同條件下NDI-EH-Br2之元件穩定度 78 4.5 探討PDIN與PEI界面修飾層之差異 82 4.5.1 PDIN與PEI修飾銀電極之效果 82 4.5.2 PDIN與PEI界面修飾層應用於鈣鈦礦光感測器的元件性能分析 83 4.5.3 PEI對NDI-EH-Br2負向效應之探討 86 4.5.4 PDIN與PEI界面修飾層應用於鈣鈦礦光感測器的穩定度分析 88 第五章 結論 94 參考文獻 95

1. M. N.-U. Hasan and C. R. Stannard, Res. J. Text. Appar., 2022, DOI: https://doi.org/10.1108/RJTA-08-2021-0103.
2. H. Qiao, Z. Huang, X. Ren, S. Liu, Y. Zhang, X. Qi and H. Zhang, Adv. Opt. Mater., 2020, 8, 1900765.
3. C. Li, Y. Ma, Y. Xiao, L. Shen and L. Ding, InfoMat, 2020, 2, 1247-1256.
4. C. Li, W. Huang, L. Gao, H. Wang, L. Hu, T. Chen and H. Zhang, Nanoscale, 2020, 12, 2201-2227.
5. X. Wang, M. Li, B. Zhang, H. Wang, Y. Zhao and B. Wang, Org. Electron., 2018, 52, 172-183.
6. K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E.-K. Lim and J. Jung, Nanomaterials, 2019, 9, 813.
7. F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li and T. Zhai, Adv. Mater. Technol., 2017, 2, 1700005.
8. Y. Zhao, C. Li and L. Shen, Chin. Phys. B, 2018, 27, 127806.
9. J. H. Heo, S.-C. Lee, S.-K. Jung, O. P. Kwon and S. H. Im, J. Mater. Chem. A, 2017, 5, 20615-20622.
10. L. Gao, Z.-G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei and Y. Li, Adv. Mater., 2016, 28, 1884-1890.
11. Y. Chen, L. Zhang, Y. Zhang, H. Gao and H. Yan, RSC Adv., 2018, 8, 10489-10508.
12. Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen and M. Wang, Nanoscale Adv., 2019, 1, 1276-1289.
13. D. Zhao, J. Huang, R. Qin, G. Yang and J. Yu, Adv. Opt. Mater., 2018, 6, 1800979.
14. X. Chen, H. Lu, Y. Yang and M. C. Beard, J. Phys. Chem. Lett., 2018, 9, 2595-2603.
15. S. H. Chang, C.-H. Chiang, H.-M. Cheng, C.-Y. Tai and C.-G. Wu, Opt. Lett., 2013, 38, 5342-5345.
16. J. Peng, Y. Chen, K. Zheng, T. Pullerits and Z. Liang, Chem. Soc. Rev., 2017, 46, 5714-5729.
17. D. Wang, M. Wright, N. K. Elumalai and A. Uddin, Sol. Energy Mater. Sol. Cells, 2016, 147, 255-275.
18. T. Leijtens, G. E. Eperon, N. K. Noel, S. N. Habisreutinger, A. Petrozza and H. J. Snaith, Adv. Energy Mater., 2015, 5, 1500963.
19. N. H. Tiep, Z. Ku and H. J. Fan, Adv. Energy Mater., 2016, 6, 1501420.
20. M. Wang, Sci. Bull., 2017, 62, 249-255.
21. J. Troughton, N. Gasparini and D. Baran, J. Mater. Chem. A, 2018, 6, 21913-21917.
22. H. Tang, S. He and C. Peng, Nanoscale Res. Lett., 2017, 12, 410.
23. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
24. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, Sci. Rep., 2012, 2, 591.
25. T. Dai, Q. Cao, L. Yang, M. H. Aldamasy, M. Li, Q. Liang, H. Lu, Y. Dong and Y. Yang, Cryst., 2021, 11, 295.
26. X. Huang, Y. Guo and Y. Liu, ChemComm, 2021, 57, 11429-11442.
27. H. Wang and D. H. Kim, Chem. Soc. Rev., 2017, 46, 5204-5236.
28. X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang and Y. Xie, Adv. Funct. Mater., 2014, 24, 7373-7380.
29. L. Dou, Y. Yang, J. You, Z. Hong, W.-H. Chang, G. Li and Y. Yang, Nat. Commun., 2014, 5, 5404.
30. W. Wang, D. Zhao, F. Zhang, L. Li, M. Du, C. Wang, Y. Yu, Q. Huang, M. Zhang, L. Li, J. Miao, Z. Lou, G. Shen, Y. Fang and Y. Yan, Adv. Funct. Mater., 2017, 27, 1703953.
31. C. Li, H. Wang, F. Wang, T. Li, M. Xu, H. Wang, Z. Wang, X. Zhan, W. Hu and L. Shen, Light Sci. Appl., 2020, 9, 31.
32. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin and J. Liu, J. Am. Chem. Soc., 2017, 139, 2852-2852.
33. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes and D. Cahen, J. Phys. Chem. Lett., 2016, 7, 167-172.
34. C. Bao, J. Yang, S. Bai, W. Xu, Z. Yan, Q. Xu, J. Liu, W. Zhang and F. Gao, Adv. Mater., 2018, 30, 1803422.
35. L. Shen, Y. Fang, D. Wang, Y. Bai, Y. Deng, M. Wang, Y. Lu and J. Huang, Adv. Mater., 2016, 28, 10794-10800.
36. C. Bao, Z. Chen, Y. Fang, H. Wei, Y. Deng, X. Xiao, L. Li and J. Huang, Adv. Mater., 2017, 29, 1703209.
37. H. L. Zhu, J. Cheng, D. Zhang, C. Liang, C. J. Reckmeier, H. Huang, A. L. Rogach and W. C. H. Choy, ACS Nano, 2016, 10, 6808-6815.
38. J. W. Lim, H. Wang, C. H. Choi, H. Kwon, L. N. Quan, W.-T. Park, Y.-Y. Noh and D. H. Kim, Nano energy, 2019, 57, 761-770.
39. W. Tian, L. Min, F. Cao and L. Li, Adv. Mater., 2020, 32, 1906974.
40. D. Hao, D. Liu, Y. Shen, Q. Shi and J. Huang, Adv. Funct. Mater., 2021, 31, 2100773.
41. X. Xu, C.-C. Chueh, P. Jing, Z. Yang, X. Shi, T. Zhao, L. Y. Lin and A. K. Y. Jen, Adv. Funct. Mater., 2017, 27, 1701053.
42. H. L. Zhu, H. Lin, Z. Song, Z. Wang, F. Ye, H. Zhang, W.-J. Yin, Y. Yan and W. C. H. Choy, ACS Nano, 2019, 13, 11800-11808.
43. N. Ma, J. Jiang, Y. Zhao, L. He, Y. Ma, H. Wang, L. Zhang, C. Shan, L. Shen and W. Hu, Nano energy, 2021, 86, 106113.
44. Y. Li, Z. Shi, W. Liang, L. Wang, S. Li, F. Zhang, Z. Ma, Y. Wang, Y. Tian, D. Wu, X. Li, Y. Zhang, C. Shan and X. Fang, Mater. Horiz., 2020, 7, 530-540.
45. F. Cao, W. Tian, K. Deng, M. Wang and L. Li, Adv. Funct. Mater., 2019, 29, 1906756.
46. C. Li, J. Lu, Y. Zhao, L. Sun, G. Wang, Y. Ma, S. Zhang, J. Zhou, L. Shen and W. Huang, small, 2019, 15, 1903599.
47. L. Shen, Y. Lin, C. Bao, Y. Bai, Y. Deng, M. Wang, T. Li, Y. Lu, A. Gruverman, W. Li and J. Huang, Mater. Horiz., 2017, 4, 242-248.
48. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen and T.-C. Wen, Adv. Mater., 2013, 25, 3727-3732.
49. S. S. Kim, S. Bae and W. H. Jo, ChemComm, 2015, 51, 17413-17416.
50. C. Tian, K. Kochiss, E. Castro, G. Betancourt-Solis, H. Han and L. Echegoyen, J. Mater. Chem. A, 2017, 5, 7326-7332.
51. Y.-Q. Zheng, Y.-Z. Dai, Y. Zhou, J.-Y. Wang and J. Pei, ChemComm, 2014, 50, 1591-1594.
52. Y. Lin, Y. Wang, J. Wang, J. Hou, Y. Li, D. Zhu and X. Zhan, Adv. Mater., 2014, 26, 5137-5142.
53. Y. Shao, Z. Xiao, C. Bi, Y. Yuan and J. Huang, Nat. Commun., 2014, 5, 5784.
54. W. Ni, M. Li, B. Kan, F. Liu, X. Wan, Q. Zhang, H. Zhang, T. P. Russell and Y. Chen, ChemComm, 2016, 52, 465-468.
55. A. F. Akbulatov, L. A. Frolova, M. P. Griffin, I. R. Gearba, A. Dolocan, D. A. Vanden Bout, S. Tsarev, E. A. Katz, A. F. Shestakov, K. J. Stevenson and P. A. Troshin, Adv. Energy Mater., 2017, 7, 1700476.
56. Y.-J. Noh, J.-H. Jeong, S.-S. Kim, H.-K. Kim and S.-I. Na, J Ind Eng Chem, 2018, 65, 406-410.
57. D. B. Shaikh, A. Ali Said, Z. Wang, P. Srinivasa Rao, R. S. Bhosale, A. M. Mak, K. Zhao, Y. Zhou, W. Liu, W. Gao, J. Xie, S. V. Bhosale, S. V. Bhosale and Q. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 44487-44500.
58. C. Sun, Z. Wu, H.-L. Yip, H. Zhang, X.-F. Jiang, Q. Xue, Z. Hu, Z. Hu, Y. Shen, M. Wang, F. Huang and Y. Cao, Adv. Energy Mater., 2016, 6, 1501534.
59. Z.-G. Zhang, B. Qi, Z. Jin, D. Chi, Z. Qi, Y. Li and J. Wang, Energy Environ. Sci., 2014, 7, 1966-1973.
60. Q. Xue, Z. Hu, J. Liu, J. Lin, C. Sun, Z. Chen, C. Duan, J. Wang, C. Liao, W. M. Lau, F. Huang, H.-L. Yip and Y. Cao, J. Mater. Chem. A, 2014, 2, 19598-19603.
61. J. Min, Z.-G. Zhang, Y. Hou, C. O. Ramirez Quiroz, T. Przybilla, C. Bronnbauer, F. Guo, K. Forberich, H. Azimi, T. Ameri, E. Spiecker, Y. Li and C. J. Brabec, Chem. Mater., 2015, 27, 227-234.
62. J. Miao, Z. Hu, M. Liu, M. Umair Ali, O. Goto, W. Lu, T. Yang, Y. Liang and H. Meng, Org. Electron., 2018, 52, 200-205.
63. T. A. Berhe, W.-N. Su, C.-H. Chen, C.-J. Pan, J.-H. Cheng, H.-M. Chen, M.-C. Tsai, L.-Y. Chen, A. A. Dubale and B.-J. Hwang, Energy Environ. Sci., 2016, 9, 323-356.
64. Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga and Y. Qi, Adv. Mater. Interfaces, 2015, 2, 1500195.
65. Y. Yuan and J. Huang, Acc. Chem. Res., 2016, 49, 286-293.
66. D. H. Agarwal, P. M. Bhatt, A. M. Pathan, H. Patel and U. S. Joshi, AIP Conference Proceedings, 2012, 1447, 531-532.
67. B. Patrizi, M. Siciliani de Cumis, S. Viciani and F. D’Amato, Int. J. Mol. Sci., 2019, 20.
68. A. Sikora and Ł. J. P. E. Bednarz, 2015, 166-169.
69. V. Gupta, H. Ganegoda, M. H. Engelhard, J. Terry and M. R. Linford, J. Chem. Educ., 2014, 91, 232-238.
70. X. Xu, C. Ma, Y.-M. Xie, Y. Cheng, Y. Tian, M. Li, Y. Ma, C.-S. Lee and S.-W. Tsang, J. Mater. Chem. A, 2018, 6, 7731-7740.
71. X. Dong, D. Chen, J. Zhou, Y.-Z. Zheng and X. Tao, Nanoscale, 2018, 10, 7218-7227.
72. N. Zhou, Y. Shen, Y. Zhang, Z. Xu, G. Zheng, L. Li, Q. Chen and H. Zhou, small, 2017, 13, 1700484.
73. Y. Li, J. Shi, J. Zheng, J. Bing, J. Yuan, Y. Cho, S. Tang, M. Zhang, Y. Yao, C. F. J. Lau, D. S. Lee, C. Liao, M. A. Green, S. Huang, W. Ma and A. W. Y. Ho-Baillie, Adv. Sci., 2020, 7, 1903368.
74. Z. Peng, Q. Wei, H. Chen, Y. Liu, F. Wang, X. Jiang, W. Liu, W. Zhou, S. Ling and Z. Ning, Cell Reports Physical Science, 2020, 1, 100224.
75. S. Naqvi, M. Kumar and R. Kumar, ACS omega, 2019, 4, 19735-19745.
76. J.-P. Hong, A.-Y. Park, S. Lee, J. Kang, N. Shin and D. Y. Yoon, Appl. Phys. Lett., 2008, 92, 143311.
77. H. Zhou, J. Zeng, Z. Song, C. R. Grice, C. Chen, Z. Song, D. Zhao, H. Wang and Y. Yan, J. Phys. Chem. Lett., 2018, 9, 2043-2048.
78. U. Bansode, A. Rahman and S. Ogale, J. Mater. Chem. C, 2019, 7, 6986-6996.
79. I. K. Kim, J. H. Jo, J. Lee and Y. J. Choi, Org. Electron., 2018, 57, 89-92.
80. C. Besleaga, L. E. Abramiuc, V. Stancu, A. G. Tomulescu, M. Sima, L. Trinca, N. Plugaru, L. Pintilie, G. A. Nemnes, M. Iliescu, H. G. Svavarsson, A. Manolescu and I. Pintilie, J. Phys. Chem. Lett., 2016, 7, 5168-5175.
81. B. Russ, M. J. Robb, B. C. Popere, E. E. Perry, C.-K. Mai, S. L. Fronk, S. N. Patel, T. E. Mates, G. C. Bazan, J. J. Urban, M. L. Chabinyc, C. J. Hawker and R. A. Segalman, Chem. Sci., 2016, 7, 1914-1919.
82. M. Ichikawa, Y. Yokota, H.-G. Jeon, G. d. R. Banoukepa, N. Hirata and N. Oguma, Org. Electron., 2013, 14, 516-522.
83. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, J. Giordano Anthony, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, M. Khan Talha, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, R. Marder Seth, A. Kahn and B. Kippelen, Science, 2012, 336, 327-332.
84. J. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang, C. Zhang, S. Chen, Q. Zhou, C. Sun, C. Yang, M. Xiao, L. Meng and Y. Li, Nat. Commun., 2020, 11, 2726.
85. L. Hu, Y. Liu, L. Mao, S. Xiong, L. Sun, N. Zhao, F. Qin, Y. Jiang and Y. Zhou, J. Mater. Chem. A, 2018, 6, 2273-2278.
86. A. Prasetio, M. Jahandar, S. Kim, J. Heo, Y. H. Kim and D. C. Lim, Adv. Sci., 2021, 8, 2100865.
87. W. Zeng, Y. Song, J. Zhang, H. Chen, M. Liu and W. Chen, Mater., 2021, 14, 5269.

無法下載圖示 全文公開日期 2027/08/24 (校內網路)
全文公開日期 2027/08/24 (校外網路)
全文公開日期 2027/08/24 (國家圖書館:臺灣博碩士論文系統)
QR CODE