簡易檢索 / 詳目顯示

研究生: 呂柏毅
Po-Yi Lu
論文名稱: 鹼性條件提升二氧化鈦光降解聚乙烯之製程與機制研究
Study on Process and Mechanism for Improving Polyethylene Photodegradation Using Titanium Dioxide with Alkaline Conditions
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 孫一明
Yi-Ming Sun
胡哲嘉
Che-Chia Hu
陳文章
Wen-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 92
中文關鍵詞: 聚乙烯TiO2光降解固態鹼
外文關鍵詞: Polyethylene, Titanium dioxide, Photocatalytic degradation, Solid base
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚乙烯是市面上最常見的塑膠產品,由於其低成本以及穩定的化學、物理性質,聚乙烯產品被廣泛應用於各種領域,當人們享受著聚乙烯給予的便利時,聚乙烯的廢棄物也造成嚴重的環境問題,根據聯合國的資料統計,聚乙烯在自然的情況下需要100年的時間才能自行分解,因此聚乙烯廢棄物的處理已成為世界關注的環境議題。TiO2為一常見的光觸媒,被廣泛的使用於塑料的光降解,不過降解效率不佳卻是TiO2一直以來需要改善的問題,現行的研究中不乏提升TiO2光降解效率之內容,以目前的研究來說,大多針對TiO2的改質進行討論,不過改質TiO2的同時卻也使整體的研究製程變得非常冗長,因此本研究致力於開發出一種簡便的方式提高聚乙烯的光降解效率。
為了達成簡化製程以及提高聚乙烯光降解效率的目的,本研究參考了TiO2光降解機制,發現OH-能夠和TiO2產生的電洞反應,生成·OH降解聚乙烯,因此本研究引入了固態鹼的概念,將TiO2和固態鹼以混合法和熱壓法製作聚乙烯薄膜,提高聚乙烯的光降解效率,研究首先使用NaOH評估鹼性條件於TiO2光降解系統的降解表現,實驗結果顯示,添加1%TiO2的LDPE樣品浸泡在5M的NaOH水溶液中,經過800小時254 nm的UV光照射,重量損失達87%,相比於未浸泡之1%TiO2的LDPE樣品重量損失為55.72%,證實了本光降解策略的可行性,接著,本研究將原本滴落塗佈法的製膜方式改成熱壓法,大幅簡化實驗製程,並且引進新的鹼性降解助劑K2CO3,本組實驗還將薄膜增厚,以符合商用聚乙烯產品規格,結果顯示添加K2CO3以及5% TiO2的聚乙烯在照光1600小時之後,樣品重量損失達64%,相較於未添加K2CO3之樣品重量損失為54%,此結果再次證明本光降解策略的可行性,並且僅需要使用簡單的混合法以及熱壓法就能達成,除了降解實驗用的LDPE之外,本研究還對商用的HDPE、PBS、PET、PU以及Nylon等塑膠材料進行光降解的測試,都產生良好的降解效果,證明了本研究廣泛的應用性,未來預計將應用範圍從紫外光觸媒拓展至可見光觸媒之範疇,繼續提升本光降解策略的應用。


Polyethylene is the most common plastic product on the market. Its widespread use in various fields is attributed to its low cost and stable chemical and physical properties. However, polyethylene products also lead to serious environmental issues. According to the United Nations, polyethylene takes at least 100 years to degrade. As a result, the disposal of polyethylene waste has become a globally environmental issue. Titanium dioxide(TiO2) is a commonly used photocatalyst and is widely applied in the photodegradation of plastics. However, a limitation with TiO2 is its low degradation efficiency. In order to overcome this limitation, this study aims to develop a simple method to enhance the photodegradation efficiency of polyethylene.
This study referenced the photocatalytic degradation mechanism of TiO2 and found that OH- can react with the photo-generated holes on TiO2, leading to the formation of ·OH that degrade polyethylene. Therefore, this study introduced solid base into the TiO2 photocatalytic system to degrade polyethylene. In the experiment, the LDPE sample containing 1% TiO2 was first soaked in a 5M NaOH aqueous solution. After exposing 800 hours UV light, the weight loss reached 87%. In comparison, the weight loss of the samples not soaked in the solution was 55.72%. This confirmed the feasibility of the photocatalytic degradation strategy in this study. Furthermore, in this study, the original drop-casting method for film fabrication was replaced with a hot-pressing technique, which significantly simplified the experimental process. In order to prepare PE film by hot-pressing, another alkaline degradation agent, K2CO3, was introduced. The experimental results demonstrated that the LDPE sample with the addition of 5% TiO2 and K2CO3 showed a weight loss of 64% after 1600 hours of UV light exposure. In comparison, the weight loss of the samples without K2CO3 was 54%. This result further confirmed that TiO2 could effectively enhance the photodegradation of polyethylene under alkaline conditions. Moreover, it demonstrated that achieving this enhancement only required simple process. Finally, this study also conducted photodegradation tests on various plastic materials such as HDPE, PBS, PET, PU, and Nylon. All of them showed good degradation effects and demonstrated the applicability of this research. In the future, the plan is to utilize visible light catalysts to further expand the application range of this photocatalytic degradation strategy.

摘要 I Abstract II 圖目錄 V 表目錄 VII Chapter 1緒論 1 1.1 研究背景 1 1.2 研究動機 3 Chapter 2文獻回顧 4 2.1 塑料降解法 4 2.1.1熱降解法 4 2.1.2光降解法 6 2.1.4生物降解法 7 2.2 聚乙烯 8 2.3 TiO2光降解塑料 9 2.3.1 TiO2光催化 9 2.3.2 TiO2光降解聚乙烯反應機制 9 2.3.3 Norrish光降解反應 11 2.4 提高TiO2光降解效率 12 2.4.1 降低TiO2能隙 12 2.4.2 降低TiO2粒徑 13 2.4.3 提高TiO2的分散性 14 2.4.4 提高TiO2的親水性 15 2.4.5 提高光電子電洞的分離效率 16 2.5 影響光降解效率之外部因素 20 2.5.1 光源強度和波長 20 2.5.2 聚乙烯薄膜厚度 22 2.5.3 環境溫度和濕度 23 2.5.4 環境pH值 24 2.5.5 樣品添加劑含量 25 Chapter 3研究方法 26 3.1 藥品 26 3.2儀器 27 3.3 實驗步驟 29 3.3.1 聚乙烯複合薄膜製備流程 29 3.3.2熱壓成膜法 30 3.3.3滴落塗佈法 30 3.4實驗分析 31 3.4.1官能基鑑定 31 3.4.2材料基本物理性質分析 31 3.4.3薄膜表面結構分析 33 3.4.4薄膜重量損失分析 33 3.4.5光降解機制分析(自由基捕捉) 34 3.4.6光降解機制分析(·OH含量測試) 34 Chapter 4結果與討論 35 4.1 Aldrich LDPE 光降解研究結果 35 4.1.1 確認TiO2之添加比例 35 4.1.2 Aldrich LDPE 樣品重量損失分析以及製備方式分析 38 4.1.3 Aldrich LDPE樣品 SEM表面分析以及EDS元素分析 41 4.1.4 Aldrich LDPE樣品FTIR官能基分析 44 4.1.5 Aldrich LDPE樣品熱性質分析 48 4.1.6 TiO2光降解機制驗證 49 4.2 Formosa HDPE 光降解研究結果 56 4.2.1 Formosa HDPE樣品重量損失分析 56 4.2.2 Formosa HDPE樣品 SEM表面分析以及EDS元素分析 58 4.2.3 Formosa HDPE樣品FTIR官能基分析 60 4.3 光降解的應用 62 4.3.1 PBS封端機制以及反應結果 62 4.3.2 PBS 封端樣品FTIR官能基分析 64 4.3.3 聚酯複合材料解聚應用 66 Chapter 5結論 69 Chapter 6未來規劃 71

參考文獻
(1) United Nations. Plastics. https://pse.is/525kfj (accessed 2023-05-21).
(2) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3 (7), e1700782.
(3) U.S. Environmental Protection Agency, Office of Resource Conservation and Recovery. Municipal Solid Waste Generation, Recycling, and Disposal in the United States Tables and Figures for 2012. https://pse.is/52pfft (accessed 2023-05-21).

(4) Ashworth, D. C.; Elliott, P.; Toledano, M. B. Waste Incineration and Adverse Birth and Neonatal Outcomes: A Systematic Review. Environ. Int. 2014, 69, 120-132.

(5) Waring, R. H.; Harris, R.; Mitchell, S. Plastic Contamination of the Food Chain: A Threat to Human Health? Maturitas 2018, 115, 64-68.
(6) Crowley, D. Health and Environmental Effects of Landfilling and Incineration of Waste: A Literature Review. Technological University Dublin, 2003. https://pse.is/4y59vl (accessed 2023-05-21).
(7) Earth Policy Institute. Plastic Bag Bans and Plastic Bag Charges. https://pse.is/5268bl (accessed 2023-05-21).
(8) Garcia, J. M.; Robertson, M. L. The Future of Plastics Recycling. Science 2017, 358 (6365), 870-872.
(9) Jui, W. C. PET Plastic Chemical Recycling Technology. Instruments Today https://pse.is/52ua6s (accessed 2023-05-22).
(10) Achilias, D.; Roupakias, C.; Megalokonomos, P.; Lappas, A.; Antonakou, Ε. Chemical Recycling of Plastic Wastes Made from Polyethylene (LDPE and HDPE) and Polypropylene (PP). J. Hazard. Mater. 2007, 149 (3), 536-542.
(11) Ariza-Tarazona, M. C.; Villarreal-Chiu, J. F.; Hernández-López, J. M.; De la Rosa, J. R.; Barbieri, V.; Siligardi, C.; Cedillo-González, E. I. Microplastic Pollution Reduction by a Carbon and Nitrogen-Doped TiO2: Effect of pH and Temperature in the Photocatalytic Degradation Process. J. Hazard. Mater. 2020, 395, 122632.
(12) Liang, W.; Luo, Y.; Song, S.; Dong, X.; Yu, X. High Photocatalytic Degradation Activity of Polyethylene Containing Polyacrylamide Grafted TiO2. Polym. Degrad. Stab. 2013, 98 (9), 1754-1761.
(13) Baur, M.; Lin, F.; Morgen, T. O.; Odenwald, L.; Mecking, S. Polyethylene Materials with in-Chain Ketones from Nonalternating Catalytic Copolymerization. Science 2021, 374 (6567), 604-607.
(14) Hartley, G. H.; Guillet, J. Photochemistry of Ketone Polymers. I. Studies of Ethylene-Carbon Monoxide Copolymers. Macromolecules 1968, 1 (2), 165-170.
(15) u Zhao, X.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y. Solid-Phase Photocatalytic Degradation of Polyethylene Plastic under UV and Solar Light Irradiation. J Mol Catal A Chem. 2007, 268 (1-2), 101-106.
(16) Olajire, A.; Mohammed, A. Green Synthesis of Palladium Nanoparticles Using Ananas Comosus Leaf Extract for Solid-Phase Photocatalytic Degradation of Low Density Polyethylene Film. J. Environ. Chem. Eng. 2019, 7 (4), 103270.
(17) Lee, M.; Heikes, B. G.; O'Sullivan, D. W. Hydrogen Peroxide and Organic Hydroperoxide in the Troposphere: A Review. Atmos. Environ. 2000, 34 (21), 3475-3494.
(18) Liu, L.; Xu, M.; Ye, Y.; Zhang, B. On the Degradation of (Micro) Plastics: Degradation Methods, Influencing Factors, Environmental Impacts. Sci. Total Environ. 2022, 806, 151312.
(19) Gardette, M.; Perthue, A.; Gardette, J. L.; Janecska, T.; Földes, E.; Pukánszky, B.; Therias, S. Photo-and Thermal-Oxidation of Polyethylene: Comparison of Mechanisms and Influence of Unsaturation Content. Polym. Degrad. Stab. 2013, 98 (11), 2383-2390.
(20) Salehi, A.; Pircheraghi, G. Thermo‐Oxidative Degradation During Sintering of Polyethylene Particles. J. Appl. Polym. Sci. 2021, 138 (19), 50373.
(21) Chu, S.; Zhang, B.; Zhao, X.; Soo, H. S.; Wang, F.; Xiao, R.; Zhang, H. Photocatalytic Conversion of Plastic Waste: From Photodegradation to Photosynthesis. Adv. Energy Mater. 2022, 12 (22), 2200435.
(22) Schneider, J.; Bahnemann, D.; Ye, J.; Puma, G. L.; Dionysiou, D. D. Photocatalysis: Fundamentals and Perspectives, Royal Society of Chemistry, 2016.
(23) Đokić, M.; Soo, H. S. Artificial Photosynthesis by Light Absorption, Charge Separation, and Multielectron Catalysis. ChemComm 2018, 54 (50), 6554-6572.
(24) Lacoste, J.; Carlsson, D.; Falicki, S.; Wiles, D. Polyethylene Hydroperoxide Decomposition Products. Polym. Degrad. Stab. 1991, 34 (1-3), 309-323.
(25) Fukuda, F. An Overview of the Activities of the Biodegradable Plastics Society, Royal Society of Chemistry, 1992.
(26) Griffin, G. J. L. Biodegradable Fillers in Thermoplastics. Am. Chem. Soc. Div. Org. Coatings. Plast. Chem. 1973, 33 (2), 88-96.
(27) Walker, J.; Austin, H.; Colwell, R. Utilization of Mixed Hydrocarbon Substrate by Petroleum-Degrading Microorganisms. J Gen Appl Microbiol. 1975, 21 (1), 27-39.
(28) Baker, I.; Baker, I. Fifty Materials That Make the World. Springer, 2018.
(29) Sinn, H.; Kaminsky, W. Ziegler-Natta Catalysis. Adv. Organomet. Chem. 1980, 18, 99-149.
(30) Bungu, P. E.; Pasch, H. Branching and Molar Mass Analysis of Low Density Polyethylene Using the Multiple Preparative Fractionation Concept. Polym. Chem. 2018, 9 (9), 1116-1131.
(31) Peacock, A. Handbook of Polyethylene: Structures: Properties, and Applications, CRC Press, 2000.
(32) Spalding, M. A.; Chatterjee, A. Handbook of Industrial Polyethylene and Technology: Definitive Guide to Manufacturing, Properties, Processing, Applications and Markets Set, John Wiley & Sons, 2017.
(33) Vasile, C.; Pascu, M. Practical Guide to Polyethylene, Smithers Rapra Publishing, 2005.
(34) Salih, S. E.; Hamood, A. F.; Abd Alsalam, A. H. Comparison of the Characteristics of LDPE: PP and HDPE: PP Polymer Blends. Mod. Appl. Sci. 2013, 7 (3), 33.
(35) Munaro, M.; Akcelrud, L. Correlations between Composition and Crystallinity of LDPE/HDPE Blends. J. Polym. Res. 2008, 15, 83-88.
(36) Chiellini, E.; Corti, A.; D'antone, S.; Baciu, R. Oxo-Biodegradable Carbon Backbone Polymers-Oxidative Degradation of Polyethylene under Accelerated Test Conditions. Polym. Degrad. Stab. 2006, 91 (11), 2739-2747.
(37) Zheng, Y.; Yanful, E. K.; Bassi, A. S. A Review of Plastic Waste Biodegradation. Crit. Rev. Biotechnol. 2005, 25 (4), 243-250.
(38) Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of Linear Polyolefins under Natural Weathering. Polym. Degrad. Stab. 2011, 96 (4), 703-707.
(39) Nakata, K.; Fujishima, A. TiO2 Photocatalysis: Design and Applications. J. Photochem. Photobiol. 2012, 13 (3), 169-189.
(40) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
(41) Nabi, I.; Ahmad, F.; Zhang, L. Application of Titanium Dioxide for the Photocatalytic Degradation of Macro-and Micro-Plastics: A Review. J. Environ. Chem. Eng. 2021, 9 (5), 105964.
(42) Salvador, P. On the Nature of Photogenerated Radical Species Active in the Oxidative Degradation of Dissolved Pollutants with TiO2 Aqueous Suspensions: A Revision in the Light of the Electronic Structure of Adsorbed Water. J. Phys. Chem. C 2007, 111 (45), 17038-17043.
(43) Howe, R. F.; Gratzel, M. EPR Study of Hydrated Anatase under UV Irradiation. J. Phys. Chem. 1987, 91 (14), 3906-3909.
(44) Scoponi, M.; Cimmino, S.; Kaci, M. Photo-Stabilisation Mechanism under Natural Weathering and Accelerated Photo-Oxidative Conditions of LDPE Films for Agricultural Applications. Polymer 2000, 41 (22), 7969-7980.
(45) Cui, H.; Hanus, R.; Kessler, M. R. Degradation of Romp-Based Bio-Renewable Polymers by UV Radiation. Polym. Degrad. Stab. 2013, 98 (11), 2357-2365.
(46) Norrish, R.; Bamford, C. Photodecomposition of Aldehydes and Ketones. Nature 1936, 138 (3502), 1016-1016.
(47) Norrish, R. G.; Kirkbride, F. W. Primary Photochemical Processes. Part I. The Decomposition of Formaldehyde. J. Chem. Soc. 1932, 1518-1530.
(48) Majhi, S. Applications of Norrish Type I and II Reactions in the Total Synthesis of Natural Products: A Review. Photochem. Photobiol. Sci. 2021, 1-22.
(49) Ihmels, H.; Scheffer, J. R. The Norrish Type II Reaction in the Crystalline State: Toward a Better Understanding of the Geometric Requirements for γ-Hydrogen Atom Abstraction. Tetrahedron 1999, 55 (4), 885-907.
(50) Roy, P.; Surekha, P.; Rajagopal, C.; Chatterjee, S.; Choudhary, V. Studies on the Photo-Oxidative Degradation of LDPE Films in the Presence of Oxidised Polyethylene. Polym. Degrad. Stab. 2007, 92 (6), 1151-1160.
(51) Atiqullah, M.; Winston, M.; Bercaw, J.; Hussain, I.; Fazal, A.; Al-Harthi, M.; Emwas, A. H.; Khan, M.; Hossaen, A. Effects of a Vanadium Post-Metallocene Catalyst-Induced Polymer Backbone Inhomogeneity on UV Oxidative Degradation of the Resulting Polyethylene Film. Polym. Degrad. Stab. 2012, 97 (7), 1164-1177.
(52) Munir, S.; Shah, S. M.; Hussain, H. Effect of Carrier Concentration on the Optical Band Gap of TiO2 Nanoparticles. Mater. Des. 2016, 92, 64-72.
(53) Guo, Q.; Zhou, C.; Ma, Z.; Yang, X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019, 31 (50), 1901997.
(54) Purabgola, A.; Mayilswamy, N.; Kandasubramanian, B. Graphene-Based TiO2 Composites for Photocatalysis & Environmental Remediation: Synthesis and Progress. Environ. Sci. Pollut. Res. 2022, 29 (22), 32305-32325.
(55) Kang, I. C.; Zhang, Q.; Yin, S.; Sato, T.; Saito, F. Improvement in Photocatalytic Activity of TiO2 under Visible Irradiation through Addition of N-TiO2. Environ. Sci. Technol. 2008, 42 (10), 3622-3626.
(56) Bhardwaj, S. K.; Singh, H.; Deep, A.; Khatri, M.; Bhaumik, J.; Kim, K. H.; Bhardwaj, N. UVC-Based Photoinactivation as an Efficient Tool to Control the Transmission of Coronaviruses. Sci. Total Environ. 2021, 792, 148548.
(57) Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Cho, M. H. Nitrogen-Doped Titanium Dioxide (N-Doped TiO2) for Visible Light Photocatalysis. New J. Chem. 2016, 40 (4), 3000-3009.
(58) Thomas, R. T.; Nair, V.; Sandhyarani, N. TiO2 Nanoparticle Assisted Solid Phase Photocatalytic Degradation of Polythene Film: A Mechanistic Investigation. Colloids Surf. 2013, 422, 1-9.
(59) Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Highly Visible Light Active TiO2-XNX Heterojunction Photocatalysts. Chem. Mater. 2010, 22 (13), 3843-3853.
(60) Kameya, Y.; Yabe, H. Optical and Superhydrophilic Characteristics of TiO2 Coating with Subwavelength Surface Structure Consisting of Spherical Nanoparticle Aggregates. Coatings 2019, 9 (9), 547.
(61) Ezhilrani, V.; Karunanithi, P.; Sarangi, B.; Joshi, R.; Dash, S. Hydrophilic-Hydrophilic Mixed Micellar System: Effect on Solubilization of Drug. SN Appl. 2021, 3, 1-10.
(62) Luyt, A.; Geethamma, V. Effect of Oxidized Paraffin Wax on the Thermal and Mechanical Properties of Linear Low-Density Polyethylene-Layered Silicate Nanocomposites. Polym. Test. 2007, 26 (4), 461-470.
(63) Fa, W.; Yang, C.; Gong, C.; Peng, T.; Zan, L. Enhanced Photodegradation Efficiency of Polyethylene‐TiO2 Nanocomposite Film with Oxidized Polyethylene Wax. J. Appl. Polym. Sci. 2010, 118 (1), 378-384.
(64) Kumar, R. S.; Sharma, T. Stability and Rheological Properties of Nanofluids Stabilized by SiO2 Nanoparticles and SiO2-TiO2 Nanocomposites for Oilfield Applications. Colloids Surf. 2018, 539, 171-183.
(65) Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al‐Ghamdi, A. A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29 (20), 1601694.
(66) Zhao, X.; Li, Z.; Chen, Y.; Shi, L.; Zhu, Y. Enhancement of Photocatalytic Degradation of Polyethylene Plastic with CuPc Modified TiO2 Photocatalyst under Solar Light Irradiation. Appl. Surf. Sci. 2008, 254 (6), 1825-1829.
(67) Mikhailova, M.; Titkov, A. Type II Heterojunctions in the Gainassb/Gasb System. Semicond. Sci. Technol. 1994, 9 (7), 1279.
(68) Yang, H. Y.; Yu, S. F.; Lau, S. P.; Zhang, X.; Sun, D. D.; Jun, G. Direct Growth of ZnO Nanocrystals onto the Surface of Porous TiO2 Nanotube Arrays for Highly Efficient and Recyclable Photocatalysts. Small 2009, 5 (20), 2260-2264.
(69) Zhou, P.; Yu, J.; Jaroniec, M. All‐Solid‐State Z‐Scheme Photocatalytic Systems. Adv. Mater. 2014, 26 (29), 4920-4935.
(70) Guo, F.; Chen, J.; Zhao, J.; Chen, Z.; Xia, D.; Zhan, Z.; Wang, Q. Z-Scheme Heterojunction g-C3N4@PDA/BiOBr with Biomimetic Polydopamine as Electron Transfer Mediators for Enhanced Visible-Light Driven Degradation of Sulfamethoxazole. Chem. Eng. J. 2020, 386, 124014.
(71) Zhou, D.; Wang, L.; Zhang, F.; Wu, J.; Wang, H.; Yang, J. Feasible Degradation of Polyethylene Terephthalate Fiber‐Based Microplastics in Alkaline Media with Bi2O3@ N‐TiO2 Z‐Scheme Photocatalytic System. Adv. Sustain. Syst. 2022, 6 (5), 2100516.
(72) Yamaguchi, K.; Sasaki, I.; Nishizaki, I.; Meiarashi, S.; Moriyoshi, A. Effects of Film Thickness, Wavelength, and Carbon Black on Photodegradation of Asphalt. J. Japan Pet. Inst. 2005, 48 (3), 150-155.
(73) Yoo, H.; Bae, C.; Yang, Y.; Lee, S.; Kim, M.; Kim, H.; Kim, Y.; Shin, H. Spatial Charge Separation in Asymmetric Structure of Au Nanoparticle on TiO2 Nanotube by Light-Induced Surface Potential Imaging. Nano Lett. 2014, 14 (8), 4413-4417.
(74) Zan, L.; Fa, W.; Wang, S. Novel Photodegradable Low-Density Polyethylene- TiO2 Nanocomposite Film. Environ. Sci. Technol. 2006, 40 (5), 1681-1685.
(75) Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers, A. A. C. M. Photocatalytic Degradation for Environmental Applications-A Review. J. Chem. Technol. Biotechnol. 2002, 77 (1), 102-116.
(76) King, B.; Hoefel, D.; Daminato, D.; Fanok, S.; Monis, P. Solar UV Reduces Cryptosporidium Parvum Oocyst Infectivity in Environmental Waters. J. Appl. Microbiol. 2008, 104 (5), 1311-1323.
(77) Ko, G.; Cromeans, T. L.; Sobsey, M. D. UV Inactivation of Adenovirus Type 41 Measured by Cell Culture mRNA RT-PCR. Water Res. 2005, 39 (15), 3643-3649.
(78) Eskandarian, M. R.; Choi, H.; Fazli, M.; Rasoulifard, M. H. Effect of UV-LED Wavelengths on Direct Photolytic and TiO2 Photocatalytic Degradation of Emerging Contaminants in Water. Chem. Eng. J. 2016, 300, 414-422.
(79) Copinet, A.; Bertrand, C.; Govindin, S.; Coma, V.; Couturier, Y. Effects of Ultraviolet Light (315 nm), Temperature and Relative Humidity on the Degradation of Polylactic acid plastic films. Chemosphere 2004, 55 (5), 763-773.
(80) Nguyen Thi Thu, T.; Nguyen Thi, N.; Tran Quang, V.; Nguyen Hong, K.; Nguyen Minh, T.; Le Thi Hoai, N. Synthesis, Characterisation, and Effect of pH on Degradation of Dyes of Copper-Doped TiO2. J. Exp. Nanosci. 2016, 11 (3), 226-238.
(81) Abramović, B.; Despotović, V.; Šojić, D.; Finčur, N. Mechanism of Clomazone Photocatalytic Degradation: Hydroxyl Radical, Electron and Hole Scavengers. React. Kinet. Mech. Catal. 2015, 115, 67-79.
(82) Rodriguez, E. M.; Marquez, G.; Tena, M.; Álvarez, P. M.; Beltran, F. J. Determination of Main Species Involved in the First Steps of TiO2 Photocatalytic Degradation of Organics with the Use of Scavengers: The Case of Ofloxacin. Appl. Catal. B . 2015, 178, 44-53.
(83) Wang, Q.; Li, H.; Yu, X.; Jia, Y.; Chang, Y.; Gao, S. Morphology Regulated Bi2WO6 Nanoparticles on TiO2 Nanotubes by Solvothermal Sb3+ Doping as Effective Photocatalysts for Wastewater Treatment. Electrochim. Acta 2020, 330, 135167.
(84) Xiao, Q.; Si, Z.; Zhang, J.; Xiao, C.; Tan, X. Photoinduced Hydroxyl Radical and Photocatalytic Activity of Samarium-doped TiO2 Nanocrystalline. J. Hazard. Mater. 2008, 150 (1), 62-67.
(85) Xanthos, D.; Walker, T. R. International Policies to Reduce Plastic Marine Pollution from Single-Use Plastics (Plastic Bags and Microbeads): A Review. Mar. Pollut. Bull. 2017, 118 (1-2), 17-26.
(86) Hasson, R.; Leiman, A.; Visser, M. The Economics of Plastic Bag Legislation in South Africa. S. Afr. J. Econ. 2007, 75 (1), 66-83.
(87) Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, 2004.
(88) Gulmine, J.; Janissek, P.; Heise, H.; Akcelrud, L. Polyethylene Characterization by FTIR. Polym. Test. 2002, 21 (5), 557-563.
(89) Ludvigsson, M.; Lindgren, J.; Tegenfeldt, J. FTIR Study of Water in Cast Nafion Films. Electrochim. Acta 2000, 45 (14), 2267-2271.
(90) Krimm, S.; Liang, C.; Sutherland, G. Infrared Spectra of High Polymers.V. Polyvinyl Alcohol. J. Polym. Sci. 1956, 22 (101), 227-247.
(91) Corrales, T.; Catalina, F.; Peinado, C.; Allen, N.; Fontan, E. Photooxidative and Thermal Degradation of Polyethylenes: Interrelationship by Chemiluminescence, Thermal Gravimetric Analysis and FTIR Data. J. Photochem. Photobiol. A: Chem. 2002, 147 (3), 213-224.
(92) Asprion, N.; Hasse, H.; Maurer, G. FT-IR Spectroscopic Investigations of Hydrogen Bonding in Alcohol-Hydrocarbon Solutions. Fluid Phase Equilib. 2001, 186 (1-2), 1-25.
(93) Sugimoto, M.; Shimada, A.; Kudoh, H.; Tamura, K.; Seguchi, T. Product Analysis for Polyethylene Degradation by Radiation and Thermal Ageing. Radiat. Phys. Chem. 2013, 82, 69-73
(94) Linxiang, L.; Abe, Y.; Nagasawa, Y.; Kudo, R.; Usui, N.; Imai, K.; Mashino, T.; Mochizuki, M.; Miyata, N. An HPLC Assay of Hydroxyl Radicals by the Hydroxylation Reaction of Terephthalic Acid. Biomed. Chromatogr. 2004, 18 (7), 470-474.
(95) Crittenden, J. C.; Hu, S.; Hand, D. W.; Green, S. A. A Kinetic Model for H2O2/UV Process in a Completely Mixed Batch Reactor. Water Res. 1999, 33 (10), 2315-2328.
(96) Chaudhary, A. K.; Chitriv, S. P.; Chaitanya, K.; Vijayakumar, R. Influence of Ultraviolet and Chemical Treatment on the Biodegradation of Low-Density Polyethylene and High-Density Polyethylene by Cephalosporium Strain. Environ. Monit. Assess. 2023, 195 (3), 395.
(97) Kowalczyk, A.; Chyc, M.; Ryszka, P.; Latowski, D. Achromobacter Xylosoxidans as a New Microorganism Strain Colonizing High-Density Polyethylene as a Key Step to Its Biodegradation. Environ.Sci.Pollut.Res. 2016, 23, 11349-11356.
(98) Holland, P. M.; Rubingh, D. N. Mixed Surfactant Systems: An Overview. American Chemical Society, 1992.
(99) Charlon, S.; Marais, S.; Dargent, E.; Soulestin, J.; Sclavons, M.; Follain, N. Structure-Barrier Property Relationship of Biodegradable Poly(butylene succinate) and Poly[(butylene succinate)-co-(butylene adipate)] Nanocomposites: Influence of the Rigid Amorphous Fraction. Phys. Chem. Chem. Phys. 2015, 17 (44), 29918-29934.
(100) Zhang, Y.; Xu, J.; Guo, B. Photodegradation Behavior of Poly(butylene succinate-co-butylene adipate)/ZnO Nanocomposites. Colloids Surf. 2016, 489, 173-181.
(101) Upadhyaya, H. P.; Kumar, A.; Naik, P. D.; Sapre, A. V.; Mittal, J. P. Dynamics of OH Formation in the Dissociation of Acrylic Acid in its (n, π*) and (π, π*) Transitions Excited at 248 and 193 nm. J. Chem. Phys. 2002, 117 (22), 10097-10103.

無法下載圖示 全文公開日期 2028/07/23 (校內網路)
全文公開日期 2033/07/23 (校外網路)
全文公開日期 2033/07/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE