簡易檢索 / 詳目顯示

研究生: 嚴婉慈
Wan-Tzu Yen
論文名稱: 氧化鋅粒徑於聚偏氟乙烯纖維之壓電能量擷取器之研究
Size effect of ZnO particle in PVDF fiber membrane for piezoelectric energy harvesting
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 鄭國彬
GUO-BIN ZHENG
張志宇
Chih-Yu Chang
吳宗明
Tzong-Ming Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 靜電紡絲PVDF@ZnO奈米複合纖維膜ZnO粒徑壓電效應機械能採集奈米發電機裝置
外文關鍵詞: PVDF@ZnO nanocomposite, ZnO particle size, piezoelectric, waste mechanical energy-harvesting, PENG device
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著智能紡織品的發展以及對可再生能源需求的增加,柔性機械能採集器和傳感應用關鍵材料的開發成為研究重點之一。
    聚偏二氟乙烯 (PVDF)擁有優異的壓電性能,且具備高柔韌性、輕巧及生產成本低廉等優點。故本研究將具有壓電特性的聚偏二氟乙烯(PVDF)與不同粒徑之氧化鋅(ZnO)奈米壓電粉體進行複合摻混,再藉由操作簡易且低成本的靜電紡絲技術搭配收集裝置,開發具有高壓電特性之奈米纖維膜並評估其壓電能力,比較氧化鋅(ZnO)粒徑於PVDF奈米纖維膜中對壓縮、拉伸和彎曲下壓電性能之影響。
    研究結果顯示,ZnO 奈米粉體摻混增強了PVDF之壓電響應。其中,PVDF@L-ZnO 奈米壓電發電機(PENG)元件可以在動態拉伸下產生 42 mV 和 82 nA、彎曲下 2.8 V 和 323 nA及壓縮下 5.6 V 和 1300 nA 的輸出電壓和電流值。此開發之PVDF@L-ZnO PENG元件可成功驅動4個發光LED二極體及充電於電容器後啟動LCD液晶顯示器。整合之PENG 元件裝置實際應用面,收集環境周圍廢棄振動機械能,如除濕機、空壓機、離心機及冷凍乾燥機等物理振動,借助10μF 電容器成功驅動LCD液晶顯示器於77 秒內。這些結果表示,本團隊開發之PENG元件具備從廢棄的環境振動能量中獲取能量之潛力,使人們能利用日常活動產生之振動能為其電子設備充電。
    目前大多數文獻將能量採集器及感測器分開探討,但本研究團隊在後續測試中,以不同測試條件下,如從人類步行及深呼吸的動作中產生 8V 和 0.04 V 的輸出電壓,佐證此開發之PENG 元件能共同於兩者應用中皆有良好表現,建立本篇的獨特性。
    此研究顯示,本團隊開發之PENG元件為一突破性能量收集器,用於收集環境機械能以轉換電能,並作為潛在有效的可穿戴式傳感器應用,將於可再生能源和綠色能源利用相關的開發中發揮關鍵作用。


    With the development of intelligent textiles and the increase demand for green and renewable energy, the development of key materials for flexible energy storage and sensing applications is the focus of research . Polyvinylidene fluoride (PVDF) is a popular piezoelectric polymer due to its high flexibility, lightweight and cost-effective in production. Therefore, polyvinylidene fluoride (PVDF) with piezoelectric properties was incorporated with zinc oxide (ZnO) ceramic nanoparticles of different particle sizes prepared by electrospinning for fabricating a flexible piezoelectric nanogenerator (PENG).
    In this study, electrospun PVDF@ZnO membrane containing ZnO with large particle (PVDF@L-ZnO) and small particle (PVDF@S-ZnO) was prepared by simple solution electrospinning method, and the effect of incorporation of ZnO and its particle size on the piezoelectric property of the PENG was systematically investigated. The piezoelectric property of the fabricated PENG device was evaluated under the different mechanical conditions of tension, compression, and bending.
    The results indicate that the incorporation of ZnO nanoparticles enhances the piezoelectric response of the PVDF under all studied conditions. In particular, the PVDF@L-ZnO PENG device can generate electrical output voltage and current of 42 mV and 82 nA under tension, 5.6 V and 1300 nA under compression as well as 2.8 V and 323 nA under bending. Besides, this developed electrical energy was utilized for real applications and the developed PVDF@L-ZnO PENG device can energize 4 LED, turn on LCD and charge different capacitors. Besides, the developed PENG device was utilized for real applications to harvest waste mechanical energy from Air compressor machine of 60 Hz being used for its common purpose and it exhibited that the fabricated L-ZnO@PVDF PENG device can harvest the being wasted mechanical energy and can turn on LCD within 77 s with aid of 10 µF capacitor. The developed PENG device also displayed stable cyclic charging and discharging property that is very important for real applications. Moreover, the PENG device can also generate an output voltage of 8V and 40 mV from the human activity of walking and deep breathing.
    In summary, we achieved a higher electrical performance at the the PVDF@L-ZnO PENG device. The realistic utilities of our fabricated piezoelectric generators have been proved by charging capacitor , energize 4 LED and turn on LCD in a short time under repetitive finger impartation.
    This study shows that the nanocomposite fiber based PENGs is a promising energy harvester for the harvesting of waste mechanical energy to converting electrical energy and as potentially effective wearable sensor applications. We anticipate that will play a crucial role in solving the problem related to renewable and green energy utilization.

    摘要 2 Abstract 4 目錄 6 圖目錄 9 表目錄 14 第1章 前言 15 1.1. 研究背景 15 第2章 文獻回顧與原理 17 2.1. 壓電效應 17 2.1.1. 正壓電效應 17 2.1.2. 逆壓電效應 19 2.1.3. 壓電材料 20 2.1.4. 粒徑效應 23 2.1.5. 壓電奈米發電機應用 24 2.2. 靜電紡絲技術 25 2.2.1. 靜電紡絲原理 25 2.2.2. 靜電紡絲應用於製備PVDF奈米纖維 29 2.3. 研究動機與目的 35 第3章 實驗 36 3.1. 實驗藥品 36 3.2. 實驗設備及儀器 37 3.3. 實驗流程圖 39 3.4. 試片製備 40 3.4.1. PVDF電紡前驅液配置 40 3.4.2. PVDF@ZnO電紡前驅液配置 40 3.4.3. 靜電紡絲流程 41 3.5. 分析方法 43 3.5.1. 高解析度場發射掃描式電子顯微鏡 (FE-SEM) 43 3.5.2. X射線繞射儀 (XRD) 43 3.5.3. 場發射穿透式電子顯微鏡 (TEM) 43 3.5.4. 傅立葉紅外線光譜儀 (FTIR) 44 3.5.5. 拉力測試 (Tension Test) 44 3.5.6. 壓電係數 (Piezoelectric Coefficient) 45 3.5.7. 壓電性能輸出量測-電壓、電流(Piezoelectric Response) 45 3.5.8. 壓電輸出功率分析 (Piezoelectric Power) 46 3.5.9. 橋式整流器和電容器(Bridge Rectifier and Capacitor) 47 第4章 結果與討論 48 4.1. PVDF/ZnO 奈米纖維膜物性分析 48 4.1.1. 結晶度分析 48 4.1.2. 顯微結構分析 53 4.1.3. 壓電性能分析 56 4.2. PVDF/ZnO 奈米纖維膜壓電性質分析 57 4.2.1. 壓電響應應用於動態拉伸 57 4.2.2. 壓電響應應用於動態彎曲 63 4.2.3. 壓電響應應用於動態壓縮 68 4.2.4. 壓電響應應用於日常生活 76 4.2.5. 壓電響應應用於環境振動能 78 4.2.6. 壓電響應應用於串並聯及多層層疊法 84 4.2.7. 壓電響應應用於網版電極 87 第5章 結論 91 第6章 參考文獻 92

    1. Curie, J. and P. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, 1880. 3: p. 90.
    2. Bairagi, S., S. Ghosh, and S.W. Ali, A fully sustainable, self-poled, bio-waste based piezoelectric nanogenerator: Electricity generation from pomelo fruit membrane. Scientific reports, 2020. 10(1): p. 1-13.
    3. Zheng, H., et al., Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self-powered systems and active remote sensing. ACS applied materials & interfaces, 2018. 10(17): p. 14708-14715.
    4. Ghosh, S.K. and D. Mandal, The envisioned strategy for early intervention of virus suspected patients through non-invasive piezo- and pyro-electric based wearable sensors. Journal of Materials Chemistry A, 2020. 9.
    5. Surmenev, R.A., et al., A review on piezo-and pyroelectric responses of flexible nano-and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy, 2021. 79: p. 105442.
    6. He, F.-A., et al., Tough and porous piezoelectric P (VDF-TrFE)/organosilicate composite membrane. High Performance Polymers, 2017. 29(2): p. 133-140.
    7. Lam, K.H. and H. Chan, Piezoelectric and pyroelectric properties of 65PMN-35PT/P (VDF-TrFE) 0–3 composites. Composites science and technology, 2005. 65(7-8): p. 1107-1111.
    8. Martins, P., et al., Optimizing piezoelectric and magnetoelectric responses on CoFe2O4/P (VDF-TrFE) nanocomposites. Journal of Physics D: Applied Physics, 2011. 44(49): p. 495303.
    9. Sinha, T.K., et al., Graphene-silver-induced self-polarized PVDF-based flexible plasmonic nanogenerator toward the realization for new class of self powered optical sensor. ACS applied materials & interfaces, 2016. 8(24): p. 14986-14993.
    10. Garain, S., et al., Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS applied materials & interfaces, 2016. 8(7): p. 4532-4540.
    11. Alam, M.M., et al., Lead-free ZnSnO3/MWCNTs-based self-poled flexible hybrid nanogenerator for piezoelectric power generation. Nanotechnology, 2015. 26(16): p. 165403.
    12. Dubois, J.C., Ferroelectric polymers: Chemistry, physics, and applications. Edited by Hari Singh Nalwa, Marcel Dekker, New York 1995, XII, 895 pp., hardcover, $225.00, ISBN 0‐8247‐9468‐0. 1996, Wiley Online Library.
    13. Bassett, D., The crystallization of polyethylene at high pressures, in Developments in crystalline polymers—1. 1982, Springer. p. 115-150.
    14. Nandi, A. and L. Mandelkern, The influence of chain structure on the equilibrium melting temperature of poly (vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics, 1991. 29(10): p. 1287-1297.
    15. Hasegawa, R., M. Kobayashi, and H. Tadokoro, Molecular conformation and packing of poly (vinylidene fluoride). Stability of three crystalline forms and the effect of high pressure. Polymer Journal, 1972. 3(5): p. 591-599.
    16. Bachmann, M., et al., An infrared study of phase‐III poly (vinylidene fluoride). Journal of Applied Physics, 1979. 50(10): p. 6106-6112.
    17. Tansel, T., High beta-phase processing of polyvinylidenefluoride for pyroelectric applications. Journal of Polymer Research, 2020. 27(4): p. 1-5.
    18. Cross, L.E., Ferroelectric materials for electromechanical transducer applications. Materials chemistry and physics, 1996. 43(2): p. 108-115.
    19. Sencadas, V., R. Gregorio Jr, and S. Lanceros-Méndez, α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. Journal of Macromolecular Science®, 2009. 48(3): p. 514-525.
    20. Martins, P., A. Lopes, and S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in polymer science, 2014. 39(4): p. 683-706.
    21. Furukawa, T., Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions: A Multinational Journal, 1989. 18(3-4): p. 143-211.
    22. Salimi, A. and A. Yousefi, Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polymer Testing, 2003. 22(6): p. 699-704.
    23. Humphreys, J., et al., A study of the mechanical anisotropy of high‐draw, low‐draw, and voided PVDF. Journal of Polymer Science Part B: Polymer Physics, 1988. 26(1): p. 141-158.
    24. Shao, H., et al., Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC advances, 2015. 5(19): p. 14345-14350.
    25. Chang, J., et al., Large d 33 and enhanced ferroelectric/dielectric properties of poly (vinylidene fluoride)-based composites filled with Pb (Zr 0.52 Ti 0.48) O 3 nanofibers. RSC advances, 2015. 5(63): p. 51302-51307.
    26. Dalle Vacche, S., et al., The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P (VDF-TrFE)/BaTiO 3 composites. Journal of Materials Science, 2012. 47(11): p. 4763-4774.
    27. Wang, W., et al., Gold‐Nanoparticle‐and Gold‐Nanoshell‐Induced Polymorphism in Poly (vinylidene fluoride). Macromolecular Materials and Engineering, 2011. 296(2): p. 178-184.
    28. Zhao, Q., et al., Flexible textured MnO2 nanorods/PVDF hybrid films with superior piezoelectric performance for energy harvesting application. Composites Science and Technology, 2020. 199: p. 108330.
    29. Yang, L., et al., Dramatically improved piezoelectric properties of poly (vinylidene fluoride) composites by incorporating aligned TiO2@ MWCNTs. Composites Science and Technology, 2016. 123: p. 259-267.
    30. Wu, C.-M., M.-H. Chou, and W.-Y. Zeng, Piezoelectric response of aligned electrospun polyvinylidene fluoride/carbon nanotube nanofibrous membranes. Nanomaterials, 2018. 8(6): p. 420.
    31. Kumar, B. and S.-W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 2012. 1(3): p. 342-355.
    32. Xu, C., et al., Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems. Nano Energy, 2012. 1(2): p. 259-272.
    33. Senasu, T., et al., Visible-light-responsive photocatalyst based on ZnO/CdS nanocomposite for photodegradation of reactive red azo dye and ofloxacin antibiotic. Materials Science in Semiconductor Processing, 2021. 123: p. 105558.
    34. Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 2006. 312(5771): p. 242-246.
    35. Li, Z., D. Zhang, and K. Wu, Cement‐based 0‐3 piezoelectric composites. Journal of the American Ceramic Society, 2002. 85(2): p. 305-313.
    36. Chaipanich, A., Effect of PZT particle size on dielectric and piezoelectric properties of PZT–cement composites. Current Applied Physics, 2007. 7(5): p. 574-577.
    37. Saravanakumar, B., et al., Fabrication of a ZnO nanogenerator for eco-friendly biomechanical energy harvesting. RSC advances, 2013. 3(37): p. 16646-16656.
    38. Lee, S., et al., Super‐flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Advanced Functional Materials, 2013. 23(19): p. 2445-2449.
    39. Cheng, Y., et al., Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017. 34: p. 562-569.
    40. Zhong, J., et al., Surface charge self-recovering electret film for wearable energy conversion in a harsh environment. Energy & Environmental Science, 2016. 9(10): p. 3085-3091.
    41. Alam, M.M. and D. Mandal, Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS applied materials & interfaces, 2016. 8(3): p. 1555-1558.
    42. Alluri, N.R., B. Saravanakumar, and S.-J. Kim, Flexible, hybrid piezoelectric film (BaTi (1–x) Zr x O3)/PVDF nanogenerator as a self-powered fluid velocity sensor. ACS applied materials & interfaces, 2015. 7(18): p. 9831-9840.
    43. Fan, X., et al., Ultrathin, rollable, paper-based triboelectric nanogenerator for acoustic energy harvesting and self-powered sound recording. ACS nano, 2015. 9(4): p. 4236-4243.
    44. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites science and technology, 2003. 63(15): p. 2223-2253.
    45. Francis, L., et al., Simultaneous electrospin–electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Acta biomaterialia, 2010. 6(10): p. 4100-4109.
    46. Shi, K., et al., Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy, 2018. 52: p. 153-162.
    47. Senthamizhan, A., B. Balusamy, and T. Uyar, Recent progress on designing electrospun nanofibers for colorimetric biosensing applications. Current Opinion in Biomedical Engineering, 2020. 13: p. 1-8.
    48. Anton, F., Process and apparatus for preparing artificial threads. 1934, Google Patents.
    49. Ziabari, M., V. Mottaghitalab, and A. Haghi, Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, 2009. 26(1): p. 53-62.
    50. Guerrero, J., et al., Fernandez-Nieves, a. Whipping of electrified liquid jets. Proc. Natl. Acad. Sci, 2014. 111: p. 13763-13767.
    51. Ditaranto, N., et al., Electrospun nanomaterials implementing antibacterial inorganic nanophases. Applied Sciences, 2018. 8(9): p. 1643.
    52. Taylor, G.I., Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1969. 313(1515): p. 453-475.
    53. Junoh, H., et al., A review on the fabrication of electrospun polymer electrolyte membrane for direct methanol fuel cell. Journal of Nanomaterials, 2015. 2015.
    54. Abd Halim, N.S., et al., Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 2020: p. 104613.
    55. Ogueri, K.S. and C.T. Laurencin, Nanofiber Technology for Regenerative Engineering. ACS nano, 2020. 14(8): p. 9347-9363.
    56. Yu, L., et al. Piezoelectric performance of aligned PVDF nanofibers fabricated by electrospinning and mechanical spinning. in 2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013). 2013. IEEE.
    57. Chamankar, N., et al., A flexible piezoelectric pressure sensor based on PVDF nanocomposite fibers doped with PZT particles for energy harvesting applications. Ceramics International, 2020. 46(12): p. 19669-19681.
    58. Lei, T., et al. Direct fabrication of polymer nanofiber membrane for piezoelectric vibration sensor. in SENSORS, 2011 IEEE. 2011. IEEE.
    59. Wu, D., et al. Piezoelectric properties of PVDF nanofibers via non-uniform field electrospinning. in 2014 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO). 2014. IEEE.
    60. Sahatiya, P., S. Kannan, and S. Badhulika, Few layer MoS2 and in situ poled PVDF nanofibers on low cost paper substrate as high performance piezo-triboelectric hybrid nanogenerator: energy harvesting from handwriting and human touch. Applied Materials Today, 2018. 13: p. 91-99.
    61. Won, S.S., et al., Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy, 2019. 55: p. 182-192.
    62. Ippili, S., et al., An eco-friendly flexible piezoelectric energy harvester that delivers high output performance is based on lead-free MASnI3 films and MASnI3-PVDF composite films. Nano Energy, 2019. 57: p. 911-923.
    63. Bafqi, M.S.S., R. Bagherzadeh, and M. Latifi, Fabrication of composite PVDF-ZnO nanofiber mats by electrospinning for energy scavenging application with enhanced efficiency. Journal of polymer research, 2015. 22(7): p. 1-9.
    64. Li, L., et al., Studies on the transformation process of PVDF from α to β phase by stretching. RSC Advances, 2014. 4(8): p. 3938-3943.
    65. Yang, Z., Z. Ye, and Z. Xu, Effect of the morphology on the optical properties of ZnO nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2009. 42(2): p. 116-119.
    66. Thakur, P., et al., Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 2018. 44: p. 456-467.
    67. Wu, Y., et al., The role of surface charge of nucleation agents on the crystallization behavior of poly (vinylidene fluoride). The Journal of Physical Chemistry B, 2012. 116(24): p. 7379-7388.
    68. Wu, C. and M. Chou, Acoustic-electric conversion and piezoelectric properties of electrospun polyvinylidene fluoride/silver nanofibrous membranes. eXPRESS Polymer Letters, 2020. 14(2).
    69. Wu, C.-M., Guo, Z.-L., Xu, S.-W., Yang M.-D., Hu, W.-T., 熔噴彈性不織布之力量感測器之研究 2017年功能性材料研討會, 2017.
    70. Mandal, D., S. Yoon, and K.J. Kim, Origin of piezoelectricity in an electrospun poly (vinylidene fluoride‐trifluoroethylene) nanofiber web‐based nanogenerator and nano‐pressure sensor. Macromolecular rapid communications, 2011. 32(11): p. 831-837.
    71. Sang, M., et al., A hydrophobic, self-powered, electromagnetic shielding PVDF-based wearable device for human body monitoring and protection. ACS applied materials & interfaces, 2019. 11(50): p. 47340-47349.
    72. Han, J., et al., Highly sensitive impact sensor based on PVDF-TrFE/Nano-ZnO composite thin film. Sensors, 2019. 19(4): p. 830.
    73. Maiti, S., et al., Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy, 2017. 42: p. 282-293.

    無法下載圖示 全文公開日期 2031/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE