簡易檢索 / 詳目顯示

研究生: 劉雅君
Ya-Jun Liu
論文名稱: 銀合金複合負極及介面保護層開發 應用於全固態硫化物電池
Development of silver alloy composite anode and interfacial protective layer in all-solid-state sulfide-based batteries.
指導教授: 黃炳照
Bing Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: 全固態電池陽極鋰銀合金介面保護層Beta PVDF複合負極
外文關鍵詞: All-solid-state battery, anode, lithium-silver alloy, interfacial protected layer, Beta PVDF, composite anode
相關次數: 點閱:297下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

全固態電池因其不可燃本質與傳統的鋰離子電池(Lithium-ion battery, LIB)相比更安全,能避免大量液態電解液造成潛在的漏液燃燒危險,且能直接使用鋰金屬當作負極,透過減少體積提高能量密度,使其成為未來的前景。電解質中又以固態硫化物因其擁有最高的導離子度與熱穩定性電解質最為突出,然而全固態電池中鋰沉積會受到集電器與電解質特性影響,不均勻鋰沉積會影響壽命與低庫倫效率,且當鋰金屬與硫化物接觸也會產生介面副反應。為了隔絕硫化物電解質與無陽極負極在鋰沉積剝離過程的鋰金屬接觸,以及抑制鋰枝晶的不均勻鋰沉積。開發與研究適合的無陽極負極保護層,是本研究的主軸。
研究策略上,主分四個部分。首先,利用化學鍍方式將奈米銀顆粒塗佈在不鏽鋼基材上,其功用作為鋰成核種,形成鋰銀合金,以達到均勻鋰沉積,進而提高電池壽命與安全性,於全電池NMC811_LIC∣p-LPSC&LIC∣SUS@Ag系統於面電容2.7 mAh/cm2下,庫倫效率最高可得94.68%。第二部分,選用二維金屬有機骨架 (MOF)作為負極介面層,期能誘導鋰離子在負極沉積時的均勻性。第三部分,則是在不銹鋼箔上引入碳材介穩相球狀碳(MCMB)與石墨烯(Graphene)緩衝層,除了可以避免沉積鋰和銀顆粒直接接觸硫化物固態電解質產生介面副反應,更可避免在合金與去合金化過程中的體積變化,造成電解質介面結構上的破壞,也有協助PVDF從Alpha相轉成Beta相的功用。於銀碳複合負極中MCMB-Ag複合負極於全電池下能改善極化現象,NMC811_LIC∣p-LPSC&LIC∣SUS@Ag@MCMB全電池系統中,其最高達庫倫效率97.55%。第四階段,引入Beta PVDF高分子層,一方面可以降低碳層導電子性避免鋰長在碳層上,另一方面亦可藉由高分子隔絕負極與硫化物介面,避免枝晶刺穿。但基於碳材本形貌缺陷、顆粒間縫隙使高分子無法完善塗佈應用於MCMB介面層,故將碳材改良改換成層狀石墨烯Graphene,改良過之高分子銀碳複合負極在NMC811_LIC∣p-LPSC&LIC∣SUS@Ag@Graphene@1%PVDF測試,進一步提升了全電池整體庫倫效率,最高可來到99.05%。


All-solid-state batteries are safer than traditional lithium-ion batteries (Lithium-ion batteries, LIBs) due to their non-flammable nature. This kind of battery avoids flammability and leakage of the liquid electrolyte. Besides, it can use lithium as an anode to increase energy density by decreasing the anode volume, making them a future perspective. Among various solid electrolytes, sulfide-type electrolyte stands out above the rest category of solid electrolytes as it has the highest ionic conductivity and best thermal stability. However, lithium deposition will be affected by the contact between the current collector and the electrolyte, and uneven lithium deposition will cause short circuit and low Coulombic efficiency in all-solid-state batteries. The interfacial side reactions will also occur when lithium metal contact with sulfide. In order to isolate the sulfide electrolyte from the anode electrode contact with lithium during plating and stripping, and to suppress the uneven lithium dendrites, we need to overcome the problems of uneven lithium deposition and interfacial side reactions, then develop a suitable anode-free anode.
In the research, there are four main stages. In the first part, silver nanoparticles are coated on the stainless steel substrate, and its function is used as nucleation seed to form lithium-silver alloys to achieve uniform lithium deposition and improve battery performance. The efficiency can reach up to 94.68% in the NMC811_LIC∣p-LPSC&LIC∣SUS@Ag full cell. In the second part, the two-dimensional metal-organic framework MOF is selected as the interfacial layer to induce the uniformity of lithium ions in the deposition. The third part is the layer of carbon MCMB and graphene, both of them can avoid the interfacial side reaction of deposited lithium and silver particles directly contacting the sulfide electrolyte, and it can also be used as buffer layer between the electrode and the solid electrolyte , prevents the volumetric expansion due to the alloying and dealloying process, causing damage to the electrolyte interface structure, and also assists the transformation of PVDF from Alpha phase to Beta phase. The MCMB-Ag composite anode can improve the polarization, and the NMC811_LIC∣p-LPSC&LIC∣SUS@Ag@MCMB full cell its highest Coulombic efficiency can reach to 97.55%. In the fourth stage, the Beta PVDF polymer layer is introduced. It can not only reduce the electrical conductivity of the carbon to prevent lithium from growing on the carbon surface but also isolate the interface between the electrode and the sulfide to avoid dendrite piercing. The polymer silver-carbon composite anode improved by polymer and carbon materials test in full cell system NMC811_LIC∣p-LPSC&LIC∣SUS@Ag@Graphene@1%PVDF elevated the overall Coulombic efficiency to 99.05%.

摘要 I ABSTRACT III 致謝 V 目錄 VII 圖目錄 XI 表目錄 XIX 第 1 章 緒論 1 1.1 前言 1 1.2 傳統鋰離子二次電池 3 1.3 全固態電池 5 1.4 全固態電池之挑戰 6 第 2 章 文獻回顧 9 2.1 負極材料之發展 9 2.1.1 碳材 11 2.1.1.1 石墨(Graphite) 12 2.1.1.2 石墨烯(Graphene) 12 2.1.2 金屬鋰 12 2.1.3 鋰合金 14 2.2 合金態負極於全固態電池 15 2.3 金屬複合負極於液態電池 18 2.4 金屬複合負極於全固態電池 20 2.5 研究動機與目的 25 第 3 章 實驗方法及實驗儀器 29 3.1 儀器設備 29 3.2 實驗藥品 30 3.3 實驗步驟與分析方法 31 3.3.1 不鏽鋼化學鍍銀 31 3.3.2 MOF_Li-Nafion塗佈 32 3.3.3 銀碳複合負極塗佈 34 3.3.4 TS cell 固態電池 35 3.4 電化學測試 36 3.4.1 交流阻抗分析 36 3.4.2 充放電測試與分析 36 3.5 儀器分析與原理 37 3.5.1 場發射掃描式電子顯微鏡(SEM) 37 3.5.2 雙束型聚焦離子束顯微鏡(FIB) 37 3.5.3 X-ray 繞射分析(XRD) 37 3.5.4 拉曼散射光譜分析儀(Raman spectroscopy) 38 第 4 章 合金複合負極平台建立與優化 39 4.1 銀合金負極 39 4.2 金屬有機骨架介面保護層 44 4.3 銀碳複合負極 48 4.3.1 介穩相球狀碳緩衝層 48 4.3.2 石墨烯二維平面緩衝層 54 4.3.3 銀碳複合負極中鋰銀合金鑑定 56 4.4 高分子介面保護層 64 4.4.1 Beta phase PVDF之合成與鑑定 65 4.4.2 高分子介面層於合金負極 69 4.4.3 高分子介面保護層應用於銀碳複合負極 70 4.5 不同電解質於複合負極之影響 78 4.5.1 丁二腈添加於硫銀鍺礦硫化物電解質 78 4.5.2 過量氯硫銀鍺礦電解質Li5.4PS4.4Cl1.6 82 第 5 章 結論 87 第 6 章 未來工作及展望 91 第 7 章 參考文獻 93

(1) Thirumalraj, B.; Hagos, T. T.; Huang, C.-J.; Teshager, M. A.; Cheng, J.-H.; Su, W.-N.; Hwang, B.-J. Nucleation and growth mechanism of lithium metal electroplating. Journal of the American Chemical Society 2019, 141 (46), 18612-18623.
(2) Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications 2021, 12 (1), 1452.
(3) Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Materials Science and Engineering: B 2015, 192, 3-25.
(4) Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B. LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
(5) Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews 2016, 116 (1), 140-162.
(6) Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q. Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in energy research 2014, 2, 25.
(7) Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chemical reviews 2020, 120 (14), 6878-6933.
(8) Chen, D.; Tang, L.; Li, J. Graphene-based materials in electrochemistry. Chemical Society Reviews 2010, 39 (8), 3157-3180. Murugan, A. V.; Muraliganth, T.; Manthiram, A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. The Journal of Physical Chemistry C 2008, 112 (37), 14665-14671.
(9) Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science advances 2018, 4 (12), eaau9245.
(10) Huggins, R. A. Lithium alloy negative electrodes. Journal of Power Sources 1999, 81, 13-19.
(11) Beaulieu, L.; Eberman, K.; Turner, R.; Krause, L.; Dahn, J. Colossal reversible volume changes in lithium alloys. Electrochemical and Solid-State Letters 2001, 4 (9), A137.
(12) Winter, M.; Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta 1999, 45 (1-2), 31-50.
(13) Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
(14) Luo, S.; Wang, Z.; Li, X.; Liu, X.; Wang, H.; Ma, W.; Zhang, L.; Zhu, L.; Zhang, X. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nature Communications 2021, 12 (1), 6968.
(15) Zhou, L.; Zuo, T.-T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F. High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy 2022, 7 (1), 83-93.
(16) Santhosha, A.; Medenbach, L.; Buchheim, J. R.; Adelhelm, P. The indium− lithium electrode in solid‐state lithium‐ion batteries: phase formation, redox potentials, and interface stability. Batteries & Supercaps 2019, 2 (6), 524-529.
(17) Tan, D. H.; Chen, Y.-T.; Yang, H.; Bao, W.; Sreenarayanan, B.; Doux, J.-M.; Li, W.; Lu, B.; Ham, S.-Y.; Sayahpour, B. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373 (6562), 1494-1499.
(18) Sakuma, M.; Suzuki, K.; Hirayama, M.; Kanno, R. Reactions at the electrode/electrolyte interface of all-solid-state lithium batteries incorporating Li–M (M= Sn, Si) alloy electrodes and sulfide-based solid electrolytes. Solid State Ionics 2016, 285, 101-105. Hänsel, C.; Singh, B.; Kiwic, D.; Canepa, P.; Kundu, D. Favorable interfacial chemomechanics enables stable cycling of high-Li-content Li–In/Sn anodes in sulfide electrolyte-based solid-state batteries. Chemistry of Materials 2021, 33 (15), 6029-6040.
(19) Wondimkun, Z. T.; Tegegne, W. A.; Shi-Kai, J.; Huang, C.-J.; Sahalie, N. A.; Weret, M. A.; Hsu, J.-Y.; Hsieh, P.-L.; Huang, Y.-S.; Wu, S.-H. Highly-lithiophilic Ag@ PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries. Energy Storage Materials 2021, 35, 334-344.
(20) Merso, S. K.; Tekaligne, T. M.; Weldeyohannes, H. H.; Nikodimos, Y.; Shitaw, K. N.; Jiang, S.-K.; Huang, C.-J.; Wondimkun, Z. T.; Jote, B. A.; Wichmann, L. An in-situ formed bifunctional layer for suppressing Li dendrite growth and stabilizing the solid electrolyte interphase layer of anode free lithium metal batteries. Journal of Energy Storage 2022, 56, 105955.
(21) Lee, J.; Choi, S. H.; Im, G.; Lee, K. J.; Lee, T.; Oh, J.; Lee, N.; Kim, H.; Kim, Y.; Lee, S. Room‐Temperature Anode‐Less All‐Solid‐State Batteries via the Conversion Reaction of Metal Fluorides. Advanced Materials 2022, 34 (40), 2203580.
(22) Kim, S.; Yoon, G.; Jung, S.-K.; Park, S.; Kim, J.-S.; Yoon, K.; Lee, S.; Kang, K. High-Power Hybrid Solid-State Lithium–Metal Batteries Enabled by Preferred Directional Lithium Growth Mechanism. ACS Energy Letters 2022, 8, 9-20.
(23) Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters 2012, 82, 220-223.
(24) Garsuch, R. R.; Le, D.-B.; Garsuch, A.; Li, J.; Wang, S.; Farooq, A.; Dahn, J. Studies of lithium-exchanged nafion as an electrode binder for alloy negatives in lithium-ion batteries. Journal of The Electrochemical Society 2008, 155 (10), A721.
(25) Pérez, M.; Moiraghi, R.; Coronado, E.; Macagno, V. Hydroquinone synthesis of silver nanoparticles: a simple model reaction to understand the factors that determine their nucleation and growth. Crystal Growth and Design 2008, 8 (4), 1377-1383.
(26) Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2018, 2 (10), 2117-2132.
(27) Rana, M.; Kim, J.; Peng, L.; Qiu, H.; Kaiser, R.; Ran, L.; Hossain, M. S. A.; Luo, B.; Gentle, I.; Wang, L. ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries. Nanoscale 2021, 13 (25), 11086-11092.
(28) Wang, J.; Gao, L.; Zhao, J.; Zheng, J.; Wang, J.; Huang, J. A facile in‒situ synthesis of ZIF‑8 nanoparticles anchored on reduced graphene oxide as a sulfur host for Li‑S batteries. Materials Research Bulletin 2021, 133, 111061.
(29) Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T. Layered cathode materials for lithium-ion batteries: review of computational studies on LiNi1–x–y Co x Mn y O2 and LiNi1–x–y Co x Al y O2. Chemistry of Materials 2020, 32 (3), 915-952.
(30) Rosenbach, C.; Walther, F.; Ruhl, J.; Hartmann, M.; Hendriks, T. A.; Ohno, S.; Janek, J.; Zeier, W. G. Visualizing the Chemical Incompatibility of Halide and Sulfide‐Based Electrolytes in Solid‐State Batteries. Advanced Energy Materials 2023, 13 (6), 2203673.
(31) Egorov, K.; Zhao, W.; Knemeyer, K.; Filippin, A. N.; Giraldo, A.; Battaglia, C. Mitigating First-Cycle Capacity Losses in NMC811 via Lithicone Layers Grown by Molecular Layer Deposition. ACS Applied Materials & Interfaces 2023, 15 (16), 20075-20080.
(32) Zhao, W.; Kido, G.; Hara, K.; Noguchi, H. Characterization of neutralized graphite oxide and its use in electric double layer capacitors. Journal of Electroanalytical Chemistry 2014, 712, 185-193.
(33) Li, B.; Sun, Z.; Lv, N.; Hu, Y.; Jiang, L.; Zhang, Z.; Liu, F. Dual Protection of a Li–Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li6PS5Cl Solid Electrolyte. ACS Applied Materials & Interfaces 2022, 14 (33), 37738-37746.
(34) Spencer-Jolly, D.; Agarwal, V.; Doerrer, C.; Hu, B.; Zhang, S.; Melvin, D. L.; Gao, H.; Gao, X.; Adamson, P.; Magdysyuk, O. V. Structural changes in the silver-carbon composite anode interlayer of solid-state batteries. Joule 2023, 7 (3), 503-514.
(35) Lovinger, A. J. Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules 1982, 15 (1), 40-44. Prest Jr, W.; Luca, D. The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. Journal of Applied Physics 1978, 49 (10), 5042-5047.
(36) El Mohajir, B.-E.; Heymans, N. Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 2001, 42 (13), 5661-5667.
(37) Gregorio, J., Rinaldo; Cestari, M. Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). Journal of Polymer Science Part B: Polymer Physics 1994, 32 (5), 859-870.
(38) Luo, J.; Fang, C. C.; Wu, N. L. High polarity poly (vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes. Advanced Energy Materials 2018, 8 (2), 1701482.
(39) Luo, J.; Wu, C.-E.; Su, L.-Y.; Huang, S.-S.; Fang, C.-C.; Wu, Y.-S.; Chou, J.; Wu, N.-L. A proof-of-concept graphite anode with a lithium dendrite suppressing polymer coating. Journal of Power Sources 2018, 406, 63-69.
(40) Song, R.; Yang, D.; He, L. Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly (vinylidene fluoride). Journal of materials science 2007, 42, 8408-8417.
(41) Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. Journal of The Electrochemical Society 2017, 164 (7), A1361.
(42) Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
(43) Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 627-631.
(44) Yu, C.; Ganapathy, S.; Hageman, J.; Van Eijck, L.; Van Eck, E. R.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M. Facile synthesis toward the optimal structure-conductivity characteristics of the argyrodite Li6PS5Cl solid-state electrolyte. ACS applied materials & interfaces 2018, 10 (39), 33296-33306.
(45) Yu, C.; Ganapathy, S.; van Eck, E. R.; van Eijck, L.; Basak, S.; Liu, Y.; Zhang, L.; Zandbergen, H. W.; Wagemaker, M. Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li 6 PS 5 Br solid electrolyte. Journal of Materials Chemistry A 2017, 5 (40), 21178-21188.

無法下載圖示
全文公開日期 2025/08/21 (校外網路)
全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE