簡易檢索 / 詳目顯示

研究生: 于峻功
Jyun-gong Yu
論文名稱: 用於改善臨床前超音波都卜勒影像系統靈敏度之互補式編碼波形
Complementary coded excitation for Improvement of Doppler Sensitivity in Pre-clinical Ultrasonic Imaging System
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
none
鄭耿璽
none
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 互補式格雷編碼移動假影商用高頻超音波影像系統都卜勒PRF/4 濾波
外文關鍵詞: Golay Complementary Sequence, motion artifact, high frequency ultrasound imaging system, Doppler, PRF/4 filtering
相關次數: 點閱:361下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

編碼發射波形藉由拉長波長提高傳輸能量以提升超音波影像訊雜比(signal-to-noise ratio, SNR),並利用脈衝壓縮技術(pulse compression)壓縮回音信號(received echo)恢復軸向解析度(axial resolution),因此可用於改善都卜勒血流估計中因散射信號微弱導致的靈敏度限制,並可用以補償高頻超音波因組織衰退造成之穿透深度限制。互補式格雷編碼(Golay Complementary Sequence, GCS)有低旁瓣(sidelobe)與低成本之硬體實現等優點,但傳統上因其移動假影(motion artifact)而被視為不適用於都卜勒血流估計。互補式格雷編碼在慢時域(slow-time domain)中具有主瓣(mainlobe)信號與旁瓣信號相差二分之一脈衝重複頻率(pulse repetition frequency, PRF)的特性,故以截止頻率為四分之一脈衝重複頻率之低通濾波(PRF/4 filtering)進行格雷解碼可消除移動假影對都卜勒成像造成的流速誤判,其效果已於前期研究中初步獲得驗證。
本篇研究進一步將前述PRF/4低通濾波之格雷解碼技術實現於商用高頻超音波影像系統,該高頻影像系統廣泛於臨床前研究中用以提供血流相關訊息,我們並於仿體與小鼠活體實驗進行互補式格雷編碼都卜勒影像之成像品質與訊雜比評估。仿體實驗結果顯示不同都卜勒偏移頻率在正負四分之一脈衝重複頻率內血流信號訊雜比均能有一定增加並提高都卜勒偵測的靈敏度,但當主瓣信號都卜勒偏移超出四分之一脈衝重複頻率時將因疊頻失真現象(aliasing)導致錯誤的血流訊息。活體實驗中小鼠的右頸動脈所擷取到的收縮舒張期間可能不盡相同導致偵測的靈敏度差異不大。腎臟血管為動靜脈並行,使用互補式格雷編碼可偵測到較深處靜脈血管的血流,但高流速動脈血管亦會出現疊頻失真現象。腹主動脈為動物體內最深處之血管,傳統發射信號其頻率若高於30MHz即無法偵測到血流,但在35MHz互補式格雷編碼發射時仍可提供一定之血流靈敏度。


Coded excitation can improve the SNR by utilizing elongated waveform to increase the transmit energy. Besides, the axial resolution can be restored by pulse compressing the received echo. Thus, it can be used to enhance the sensitivity of Doppler flow estimation which it is often compromised by the weak blood flow scattering. Also, it could increase the penetration depth of high frequency ultrasound limitation which is resulted from frequency attenuation. The Golay Complementary Sequence (GCS) has the advantages of low range side lobe and low implementation cost, it is conventionally regarded as not applicable to blood flow detection because of potential motion artifact. In the GCS, the spectral difference of the main-lobe signal and the side-lobe signal is half of the pulse-repetition-frequency (PRF). Based on this property, it can be performed by decoding the received echoes with a low-pass filter whose cut-off frequency is PRF/4 in the slow-time domain to eliminate the motion artifact. Also, the performance of this technique has been verified in previous study.
In this research, the PRF/4 filtering has been implemented in a high frequency ultrasound imaging system. The high frequency ultrasound imaging system is widely used in pre-clinical research to provide the flow information. We validate the efficacy of the Doppler flow image quality and SNR using in-vitro and in-vivo experiments. The in-vitro experiment shows that the SNR and the sensitivity could be improved while the different Doppler frequency shifts within ±PRF/4. Furthermore, aliasing occurs when the main-lobe signal is beyond the limit of ±PRF/4. The in-vivo experiment demonstrates that the sensitivity difference of the Right Common Carotid Artery of the mouse is not obvious because the acquisition frames from diastole and systole are not the same. In the kidney vessel, the depth of the flow detection could be increased in the vein of the kidney vessel, but the higher velocity in the artery of the kidney vessel causes aliasing. The abdominal aorta is the deepest vessel in the mouse. Conventionally, the flow estimation is not achievable when the transmit frequency is higher than 30MHz. However, when the transmit signal is GCS, the sensitivity can be as good as the conventional method even with the transmit frequency of 35MHz.

中文摘要 I Abstract III 致謝 V 圖目錄 IX 第一章 緒論 1 1-1 超音波影像基本原理 1 1-2 超音波都卜勒血流量測 4 1-2-1 都卜勒效應 4 1-2-2 馬達掃描方式 5 1-2-3 血流參數計算 7 1-2-4 一維自相關函數法 8 1-3 組織衰減效應 13 1-4 研究動機 16 第二章 高頻超音波血流偵測技術 17 2-1 編碼發射信號 17 2-2 互補式格雷編碼原理 19 2-3 互補式格雷編碼之慢時域特性 21 2-4 慢時域濾波器設計 24 第三章 研究方法 31 3-1 商用超音波系統31 3-2 實驗架構 35 3-2-1 仿體實驗 35 3-2-2 小鼠活體實驗 36 3-2-3 實驗數據統計分析 38 3-3 Matlab都卜勒影像信號處理 39 3-4 商用超音波系統都卜勒影像信號處理 41 3-5 壓縮濾波器係數選擇 42 第四章 研究結果 46 4-1 血流仿體影像 46 4-1-1 未疊頻失真46 4-1-2 疊頻失真 51 4-2 小鼠活體影像 58 4-2-1 右頸動脈 58 4-2-2 腎臟血管 61 4-2-3 腹主動脈 67 第五章 討論、結論與未來工作 74 5-1 結論74 5-2 討論75 5-3 未來工作 79 參考文獻80

[1] F. S. Foster, C. J. Palvin, K. A. Harasiewicz, D. A. Christopher, and D. H. Turnbull, “Advances in Ultrasound Biomicroscopy,” Ultrasound Med. Biol., vol. 26, no. 1, pp. 1-27, 2000.
[2] D. A. Knapik, B. Starkoski, C. J. Palvin, and F. S. Foster, “A 100-200 MHz Ultrasound Biomicroscope,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 47, no.6, 2000.
[3] C. Passmann and H. Ermert, “Adaptive 150 MHz ultrasound imaging of the skin and the eye using an optimal combination of short pulse mode and pulse compression mode,” Proc. IEEE Ultrason. Symp., pp. 1291–1294, 1995.
[4] K. W. Ferrara, B. G. Zagar, J. B. Sokil-Melgar, R. H. Silverman, and I. M. Aslanidis, “Estimation of Blood Velocity with High Frequency Ultrasound,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 43, no. 1, 1996.
[5] M. Vogt, and H. Ermert, “Application of high frequency broadband ultrasound for high resolution blood flow measurement,” IEEE Ultrasonics Symposium Proceedings Toronto 1997, pp. 1243-1246, 1997.
[6] D. E. Goertz, D. A. Christopher, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster, “High-Frequency Color Flow Imaging of the Microcirculation,” Ultrasound Med. Biol., vol. 26, no.1, pp. 63-71, 2000.
[7] D. E. Kruse, R. H. Silverman, R. J. Fornaris, D. J. Coleman and K. W. Ferrara,“A swept-scanning mode for estimation of blood velocity in the microvasculature,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 45, no. 6, pp. 1437–1440, 1998.
[8] 陳彥甫,超音波小動物影像之血流參數計算及應用,碩士論文,國立台灣大學,2003
[9] 劉品弦,於慢時域進行格雷解碼之超音波都卜勒影像系統,碩士論文,國立臺灣科技大學,2013
[10] T. Loupas, J. Powers, and R. W. Gill, “An axial velocity estimator for ultrasound blood flow imaging, based on a full evaluation of the doppler equation by means of a two-dimensional autocorrelation approach," IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 42, pp. 672-688, 1995.
[11] D. H. Evans, J. A. Jensen, and M. B. Nielsen, “Ultrasonic colour Doppler imaging," Interface Focus, vol. 1, no. 4, pp. 490-502, August, 2011.
[12] J. A. Jensen, Estimation of Blood Velocities Using Ultrasound: A Signal Processing Approach. New York, NY: Cambridge University Press, 1996.
[13] 何祚明,高頻超音波影像系統,碩士論文,國立台灣大學,2002
[14] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in ultrasound. Part I: Basic concepts and expected benefits,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 52, pp. 177–191, 2005.
[15] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical ultrasound. Part II: Design and performance for medical imaging applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 52, pp. 192–207, 2005.
[16] T. Misaridis and J. A. Jensen, “Use of modulated excitation signals in medical ultrasound. Part III: High frame rate imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 52, pp. 208–219, 2005.
[17] M. O’Donnell, “Coded excitation system for improving the Penetration of real-time phased-array imaging systems,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 39, pp. 341–351, 1992.
[18] R. Y. Chiao and X. H. Hao, “Coded excitation for diagnostic ultrasound: a system developer's perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 10, no. 2, pp. 160–170, 2005
[19] J. Liu and M. F. Insana, “Coded pulse excitation for ultrasonic strain imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr, vol. 52, pp. 231–240, 2005.
[20] K. Liu, Q. Peng, X. Wang, and S. Gao, “Vitreous image enhancement in an ophthalmic sonographic imaging system using Golay coded excitation,” J. Ultrasound Med., vol. 24, pp. 1251-1259, 2005.
[21] H. Zhao, L. Y. L. Mo, and S. Gao, “Barker-coded ultrasound color flow imaging: Theoretical and practical design considerations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 54, no. 2, pp.319–331, 2007.
[22] M. H. Pedersen, T. X. Misaridis, and J. A. Jensen, “Clinical evaluation of chirp-coded excitation in medical ultrasound,” Ultrasound Med. Biol., vol. 29, pp. 895–905, 2003.
[23] F. Gran, J. Udesen, M. B. Nielsen and J. A. Jensen, “Coded ultrasound for Blood flow estimation using subband processing,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 55, no. 10, pp. 2211–2220, 2008.
[24] C. C. Shen and J. G. Yu, “Slow-time Golay Decoding for Doppler Detection of High-velocity Blood Flow,” Proc. IEEE Ultrason. Symp., pp. 1488–1491, 2013.
[25] 李浥涵,臨床前超音波影像之心臟功能研究應用,碩士論文,國立台灣大學,2012
[26] M. L. Cook, The Anatomy of the Laboratory Mouse, New York:Academic, 1965.
[27] https://www.interactive-biology.com/3254/the-anatomy-of-the-kidney/

QR CODE