簡易檢索 / 詳目顯示

研究生: 馬佩琪
PEI-CHI MA
論文名稱: 以射極-濺鍍沉積氧化銦鎢及氫化氧化銦之研究
The Study of Tungsten Doped Indium Oxide and Hydrogen Doped Indium Oxide Fabrication by RF-sputter method
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 葉秉慧
Pinghui Sophia Yeh
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 參鎢氧化銦氫化氧化銦射極-濺鍍透明導電膜
外文關鍵詞: tungsten-doped indium oxide, hydrogen-doped indium oxide, RF-sputtering, electrical resistivity
相關次數: 點閱:205下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本論文中我們使用射極-濺鍍沉積參鎢氧化銦以及氫化氧化銦之透明導電膜,期望能利用該等材質較高的功函數以及光學透過特性應用於矽晶異質接面太陽能電池的製作上,以獲得較佳電池轉換效率之表現。實驗結果顯示,當調整電極間距為3.5 cm、反應壓力5mtorr、電漿功率密度1W/cm2、基材溫度25°C的製程參數下沉積出的參鎢氧化銦薄膜具有低至4.5×10-4Ω∙cm的電阻率以及在800-1800奈米長波長波段高達75%以上的透光率(沉積厚度約220nm)。相對的,調整電極間距5cm、反應壓力5mtorr、電漿功率密度0.75W/cm2、基材溫度25°C並以水蒸氣為氫源的製程參數所沉積出的氫化氧化銦薄膜呈現最低僅有3.5×10-3Ω∙cm的電阻率,但是在長波長800-1800奈米區域呈現高達92%的光學穿透率(沉積厚度約250nm)。


We have fabricated tungsten-doped indium oxide (IWO) and hydrogen-doped indium oxide (IO:H) thin layers using RF-sputtering technique. By using a one atomic weight percent of tungsten IWO target, the lowest resistivity of the IWO layers fabricated showed 4.5×10-4 Ω∙cm at a film thickness of 220 nm. This film also showed an averaged transmittance of 75% in the IR range of 800-1800 nm. By contrast, hydrogen doped indium oxide (IO:H) layers, prepared using H2O as the source of hydrogen, showed a very high light transmittance of 92% in the wavelength range of 800-1800 nm, yet a relatively high electrical resistivity of 3.5×10-3 Ω∙cm at a film thickness of 250 nm.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖索引 VII 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 異質接合矽晶太陽能電池 3 1.3 透明導電層 10 1.4 研究動機與目的 13 第二章 實驗方法與步驟 15 2.1實驗藥品及氣體 15 2.2 實驗裝置 17 2.2-1 使用磁控濺鍍系統成長透明導電玻璃薄膜 17 2.2-2 使用高溫爐系統進行退火製程 19 2.3 實驗程序 20 2.3-1玻璃基材的清洗 20 2.3-2以RF-sputtering成長IWO及IO:H 21 2.4 分析儀器 22 2.4-1紫外光/可見光光譜儀 (UV/VIS) 22 2.4-2橢圓偏光儀(ellipsometer) 25 2.4-3場發射掃描式電子顯微鏡 (field emission scanning electron microscope, FE-SEM) 26 2.4-4霍爾量測儀 (Hall measurement) 27 2.4-5 X光繞射儀(X-ray Diffraction, XRD) 30 第三章 結果與討論 32 3.1 IWO透明導電層之光電性質與結構探討 32 3.1-1氧氣流量對IWO透明導電層長膜的結構及光電特性效應 32 3.1-2退火處理及長膜時的基材溫度對濺鍍IWO透明導電膜的結晶結構及光電特性的效應 36 3.1-3靶材與基材的距離對IWO透明導電層長膜的結構及光電特性的影響 41 3.2氫化氧化銦(IO:H)透明導電膜的濺鍍製作 44 3.2-1氧氣流量對成長氧化銦透明導電膜物性的影響 44 3.2-2水蒸氣分壓對IO:H透明導電層長膜的結構及光電特性效應 47 3.2-3基材溫度對濺鍍IO:H透明導電膜的結構及光電特性之效應 51 3.3 IWO/IO:H透明導電層之光電性質與結構探討 53 第四章 結論 60 第五章 參考文獻 61 作者簡介 66

1. Commercial Times 2012
2. Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta and Ewan D. Dunlop,Prop.Photovolt:Res.Appl.2014:22:1-9
3. Y. Tsunomura, Y. Yoshimine, M. Taugchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, “Twenty-two percent efficiency HIT solar cell”, Solar Energy Material &Solar Cell 93 (2009) 670-673
4. E. Maruyama, A. Terakawa, M. Taugchi, Y. Yoshimine, D. Ide, T. Baba, M. Shima, H. Sakata, M. Tanaka, “Sanyo’s Challenges to the Development of High efficiency HIT Solar Cells and the Expansion of HIT Business ”, 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, (2009) 1690
5. S. Taira, Y. Yoshimine, T. Baba, M. Taguchi, H. Kanno, T. Kinoshita, H. Sakata, E. Maruyama and M. Tanaka, 22nd EU-PVSEC 3-7 September, 2007 Milano, Italy.
6. S.D. Wolf, A. Descoeudres, Z.C. Holman, C. Ballif, “High-efficiency Silicon Heterojunction Solar Cells: A Review ” , Green, Vol. 2 (2012) 7-24
7. Conrad, E. Korte, L. von. Maydell, L.K. Angermann, H. Schubert, C. Stangl, R.Schmidt, “ Development and optimization of a-Si:H/c-Si heterojunction solar cells completely processed at low temperatures. ”,Proc. 21st Eur. Photovolt. Sol. Energy Conf., Dresden, Germany, (2006) 784-787
8. Fesquet, L. Olibet, S. Vallat-Sauvain, E. Shah, A. Ballif, “High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiments. ”
9. Kleider, J.P. Chouffot, R. Gudovskikh, A.S. Roca i Cabarrocas, P. Labrune, M. Ribeyron, P.J. Bruggemann, “Electronic and structural properties of the amorphous/ crystalline silicon interface. ”, Thin Solid Films 517(23), (2009) 6386-6391
10. Das, U. Hegedus, S. Zhan, L. Appel, J. Rand, J. Birkmine, “ Investigation of hetero-interface and junction properties in silicon heterojunction solar cells. ” , Conf. Rec. 35th IEEE Photovolt. Spec. Conf., Hawai, USA, (2010) 1358-1362
11. Schmidt, M. Korte, L. Laades, A. Stangl, R. Schubert, C. Angermann, H. Conrad, E. von Maydell, “Physical aspects of a-Si:H/c-Si hetero-junction solar cells. ”,Thin Solid Films 515, (2007)7475-7480
12. Delfina Munoz, Thibaut Desrues, Pierre-Jean Ribeyron, Cea-Ines, Savoie Technolac - 50 avenue du lac Leman - BP258 F-73375 Le Bourgetdu Lac – Cedex
13. L.Korte, E. Conrad, “Advances in a-Si:H/c-Si heterojunction solar cell fabrication and characterization. ” Solar Energy Materials and Solar Cells (2009)905-910.
14. S. Hanafusa, H. Kuwano, “Developement of New a-si c-si Heterojunction Solar Cell Acj-Hit (Artificially Constructed Junction-Heterojunction with Intrinsic Thin Layer).” Japn J.Appl Phys Part 1-Regular Papers Short Notes & Review Papers, Vol. 31, No. 11, (1992) 3518-3522.
15. Kobayashi, H. Ishida, Y. Nakato, Y Tsubomura, H. J. Appl. Phys. 1991,69,1736.
16. Tahar, R. B. H. Ban, T. Ohya, Y. Takahashi, Y. J. Appl. Phys. 1998,83,2631.
17. Odaka, H. Iwata, S. Taga, N. Ohnishi, S. Kaneta, Y. Shigesato, Y. J. Appl. Phys. 1997,36,5551.
18. Costellano, J. E. Handbook, Display Technology, Academic Press New York,1992.
19. Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2007,91,1592
20. Ronnen Levinson, Paul Berdahl and Hashem Akbari, Solar Energy & Solar Cells , (2005) 319-349
21. 施敏,半導體元件物理與製作技術,第二版,國立交通大學出版社,新竹市(2002)
22. Sunbo Kim1, Junhee Jung1, Youn-Jung Lee, Shihyun Ahn, Shahzada Qamar Hussain1, Jinjoo Park, Bong-Shik Song, Sangmyeng Han, Vinh Ai Dao, Jaehyeong Lee2 and Junsin Yi1,2*, Materials Research Bulletin (2014)
23. Y. Hishikawa, M. Sasaki, S. Tsuge, S. Tsuda, Jpn. J. Appl. Phys. 33, 4373 (1994).
24. Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, Jpn. J. Appl. Phys. 30, 1008 (1991).
25. Y. Hishikawa, S. Tsuge, N. Nakamura, S. Tsuda, S. Nakano, Y. Kuwano, J. Appl. Phys. 69, 508 (1991).
26. M. G. Zebaze Kana, E. Centurioni, D.Iencinella, C. Summonte, Thin Solid Film 500,203(2006).
27. M. Nisha, S. Anusha, A. Antony, R. Manoj, M.K. Jakaraj, Appl. Surf. Sci. 252, 1430(2005).
28. S. Boycheva, A.K. Sytchkova, M.L. Grilli, A. Piegari, Thin Solid Films 515,8469(2007).
29. C.H. Yi, I. Yasui,Y.Shigesato, Jpn. J. Appl. Phys. 34,600(1995).
30. V. Vasu, A. Subramaniam, Thin Solid Films 193,696(1990).
31. T. Karasawa, Y. Miyata, Thin Solid Films 223,135(1993).
32. E. Terzini, P. Thilakan, C. Minarini, Mater. Sci. Eng. B77, 110(2000).
33. H. Moormann, D. Kohl, G. Heiland, Surf. Sci. 80, 261(1979).
34. J. E. Byrne, “Recovery Recrystallization and Grain Growth”, Macmillan Publishing, 1965.
35. J. H. Lee, J Electroceram, doi:10.1007/s10832-008-9539-6
36. Y. Guldner, J. M. Berroir, J. P. Vieren, M. Voos, I. Sagnes, P. A. Badoz, Warren, and D. Dutartre, Phys. Rev. B 48, (1993) 12312-12315.
37. S. Madhavi and V. Venkataraman, J. Appl. Phys. 89, ( 2001) 2497-2499.
38. L. Barraud, Z.C. Holman n, N. Badel, P. Reiss 1, A. Descoeudres, C. Battaglia, S. De Wolf, C. Ballif, Solar Energy Materials & Solar Cells 115 (2013) 151-156

QR CODE