簡易檢索 / 詳目顯示

研究生: 許倬芸
Chou-Yun Hsu
論文名稱: 運用Fabry-Perot共振腔增益微環形諧振器之品質因子以提升生物感測靈敏度
Microring Resonator Q Factor Improvement through Fabry-Perot Cavity for Biosensing Sensitivity Enhancement.
指導教授: 徐世祥
Shih-Hsiang Hsu
口試委員: 張哲菖
Che-Chang Chang
何文章
Wen-Jeng Ho
李志堅
Chih-Chien Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 82
中文關鍵詞: 矽光子矽波導微環形諧振器生物感測品質因子馬赫詹德干涉
外文關鍵詞: Silicon photonics, Silicon waveguide, Microring resonator, Biosensing, Quality factor, Mach - Zehnder interferometer
相關次數: 點閱:364下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

生醫光電是一成長迅速的研究領域,而且已成為生物科技重點發展項目之一。近年來,研究人員提出將微環形諧振器(Microring Resonator; MRR)用於無標記生物感測應用,由環內強電場增強引起的高品質因子(Q)使得MRR成為有效地分析檢測生物分子之微小濃度引起折射率變化檢測的良好候選者。本論文我們提出用空間相位量測法來展示干涉之MRR的最高的靈敏度,此靈敏度可推導成微環形諧振器的有效長度。由於微環形諧振器有效長度與品質因子Q成正比,所以eye-like 微環形諧振器與基於Sagnac原理的Fabry-Perot析光器將被使用以增進提升品質因子Q。此新穎式生物感測器之解析度理論上可以達到至少1.3×10-6 RIU。我們運用光纖通訊波段之寬頻譜作為低同調干涉光源,並採用兩級馬赫詹德(Mach-Zehnder)干涉儀作為此實驗架構主體,其優勢在於生醫感測上空間相位解析能力好,並具有干涉基準點與光學尺的優勢。
本論文中,以兩級Mach-Zehnder干涉儀以及低同調光源作為實驗架構主體,並結合微環形諧振器的共振現象達到醫學感測的目的,也因為使用兩級的Mach-Zehnder干涉儀,成功解決一級的Mach-Zehnder干涉儀沒有基準點可以作為濃度變化依據的問題,並在數據處理上以MATLAB將干涉波包以高斯曲線擬合(Gaussian Curve Fitting)之方式分析不同濃度待測物的變化,其靈敏度為49 μm⁄μM,且解析度可達到1.53 nM。


Biophotonics is a rapidly growing field in prevailing researches and becomes one of the major developed projects of biomedical technology. In recent years, the microring resonator (MRR) has been utilized for label-free biosensing applications. The high quality factor (Q) from the strong electric field enhancement within the ring makes the MRR a good candidate for biomolecule detection under low analyte concentration conditions. Here we propose the MRR interrogated with an interferometry to demonstrate the highest spatial phase sensitivity, which can be derived to a MRR effective length. Since the MRR effective length is proportional to the quality factor Q, the eye-like MRR and sagnac based Fabry-Perot etalon will be implemented to enhance Q factor. Finally, the biosensing resolution can theoretically achieve at least 1.3x10-6 RIU. A broad band source with the fiber communication wavelength range will be utilized for the Mach-Zehnder based optical low coherence interferometry (OLCI) system. Moreover, a two-staged OLCI is intentionally built to demonstrate better spatial phase resolution, interferogram bench mark, and optical ruler for biosensing.
In this thesis, the two-staged Mach-Zehnder interferometer and broad band source are utilized to characterize the MRR phenomenon in spatial domains under different concentrations. One advantage for two-staged Mach-Zehnder interferometer is that the bench mark interferograms from the 1st stage can be taken as a reference point during biosensing. Then the different concentrations of the analytes will be analyzed using MATLAB for Gaussian curve fillitng. And the sensitivity and resolution can demonstrate 49 μm⁄μM and 1.53 nM, respectively.

摘要 I Abstract II 致謝 I 目錄 II 圖目錄 IV 表目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究之重要性 4 1.4 論文架構 5 第二章 文獻探討 6 2.1 波導理論 6 2.2 微環形諧振器原理 6 2.3 雙環眼形諧振器原理 9 2.4 Mazh-Zehnder干涉儀 15 2.5 微環形諧振器之生物感測器 21 2.6 Ring down原理 23 2.7 國內外微環形諧振器之生物感測器 24 第三章 研究與模擬方法 32 3.1 光纖低同調干涉波包模擬 32 3.2 高品質因子微環形諧振器之設計 32 微環形諧振器參數設定 32 Fabry-Perot結合微環形諧振器 35 Fabry-Perot共振腔結合雙微環眼形諧振器 40 第四章 實驗步驟 43 4.1 實驗架構 43 4.2 準備待測物 44 4.3 OFLCI系統架設 46 輸出訊號訊認 46 波導量測系統建立 48 兩級干涉波包 50 高斯曲線擬合(Gaussian Curve Fitting) 52 4.4 量測結果與討論 53 葡萄糖量測結果 53 合成DNA量測結果 56 重複性驗證 59 第五章 結論與未來展望 61 5.1 結論 61 5.2 未來展望 62 參考文獻 66

[1] 陳俊彥,矽光波導微環形諧振器特性之分析,國立中山大學,高雄,2015.A.
[2] Portela and P. Digard, "The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication", Journal of General Virology, vol. 83, no. 4, pp. 723-734, 2002.
[3] M. Matrosovich, T. Matrosovich, T. Gray, N. Roberts and H. Klenk, "Neuraminidase Is Important for the Initiation of Influenza Virus Infection in Human Airway Epithelium", Journal of Virology, vol. 78, no. 22, pp. 12665-12667, 2004.
[4] J. Treanor, F. Hayden, P. Vrooman, R. Barbarash, R. Bettis, D. Riff, S. Singh, N. Kinnersley, P. Ward, R. Mills and for the US Oral Neuraminidase Study Group, "Efficacy and Safety of the Oral Neuraminidase Inhibitor Oseltamivir in Treating Acute Influenza", JAMA, vol. 283, no. 8, p. 1016, 2000.
[5] Moscona, "Neuraminidase Inhibitors for Influenza", New England Journal of Medicine, vol. 353, no. 13, pp. 1363-1373, 2005.
[6] John Senior and M. Yousif Jamro, Optical Fiber Communications: Principles and Practice, 3rd ed, Financial Times/Prentice Hall, 2009.
[7] Chung-Yen Chao, W. Fung and L. Guo, "Polymer microring resonators for biochemical sensing applications", IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 1, pp. 134-142, 2006.
[8] M. Sumetsky, "Optimization of optical ring resonator devices for sensing applications", Optics Letters, vol. 32, no. 17, p. 2577, 2007.
[9] L. Zhang, M. Song, T. Wu, L. Zou, R. Beausoleil and A. Willner, "Embedded ring resonators for microphotonic applications", Optics Letters, vol. 33, no. 17, p. 1978, 2008.
[10] L. Tobing, D. Lim, P. Dumon, R. Baets and M. Chin, "Finesse enhancement in silicon-on-insulator two-ring resonator system", Applied Physics Letters, vol. 92, no. 10, p. 101122, 2008.
[11] L. Mario, S. Darmawan and M. Chin, "Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching", Optics Express, vol. 14, no. 26, p. 12770, 2006.
[12] F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang and J. Yang, "Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer", Optics Express, vol. 17, no. 9, p. 7708, 2009.
[13] B. Li, Y. Xiao, C. Zou, X. Jiang, Y. Liu, F. Sun, Y. Li and Q. Gong, "Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators", Applied Physics Letters, vol. 100, no. 2, p. 021108, 2012.
[14] Q. Huang, X. Zhang, J. Xia and J. Yu, "Dual-band optical filter based on a single microdisk resonator", Optics Letters, vol. 36, no. 23, p. 4494, 2011.
[15] A. Yariv, Y. Xu, R. Lee and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis", Optics Letters, vol. 24, no. 11, p. 711, 1999.
[16] J. Heebner, R. Boyd and Q. Park, "SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides", Journal of the Optical Society of America B, vol. 19, no. 4, p. 722, 2002.
[17] Y. Landobasa, S. Darmawan and M. Chin, "Matrix analysis of 2-D microresonator lattice optical filters", IEEE Journal of Quantum Electronics, vol. 41, no. 11, pp. 1410-1418, 2005.
[18] M. Sumetsky, "Optical fiber microcoil resonators", Optics Express, vol. 12, no. 10, p. 2303, 2004.
[19] C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang and J. Yang, "Asymmetric Fano resonance in eye-like microring system", Applied Physics Letters, vol. 101, no. 2, p. 021110, 2012.
[20] W. Hong, G. Gu and Q. Chen, "Analysis of microring filter with two embedded microring", Optik - International Journal for Light and Electron Optics, vol. 124, no. 19, pp. 3933-3935, 2013.
[21] X. Fan, I. White, S. Shopova, H. Zhu, J. Suter and Y. Sun, "Sensitive optical biosensors for unlabeled targets: A review", Analytica Chimica Acta, vol. 620, no. 1-2, pp. 8-26, 2008.
[22] A. Densmore, D. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delge, B. Lamontagne, J. Schmid and E. Post, "A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor", IEEE Photonics Technology Letters, vol. 18, no. 23, pp. 2520-2522, 2006.
[23] G. Nemova and R. Kashyap, "Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating", Journal of the Optical Society of America B, vol. 24, no. 10, p. 2696, 2007.
[24] S. Cho and N. Jokerst, "A Polymer Microdisk Photonic Sensor Integrated Onto Silicon", IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2096-2098, 2006.
[25] R. Boyd and J. Heebner, "Sensitive disk resonator photonic biosensor", Applied Optics, vol. 40, no. 31, p. 5742, 2001.
[26] C. Chao and L. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance", Applied Physics Letters, vol. 83, no. 8, pp. 1527-1529, 2003.
[27] A. Armani and K. Vahala, "Heavy water detection using ultra-high-Q microcavities", Optics Letters, vol. 31, no. 12, p. 1896, 2006.
[28] A. Armani, R. Kulkarni, S. Fraser, R. Flagan and K. Vahala, "Label-Free, Single-Molecule Detection with Optical Microcavities", Science, vol. 317, no. 5839, pp. 783-787, 2007.
[29] H. Yi, D. Citrin and Z. Zhou, "Highly sensitive silicon microring sensor with sharp asymmetrical resonance", Optics Express, vol. 18, no. 3, p. 2967, 2010.
[30] D. Dai and S. He, "Highly-sensitive sensor with large measurement range realized with two cascaded-microring resonators", Optics Communications, vol. 279, no. 1, pp. 89-93, 2007.
[31] Baoqing Su, Chunxia Wang, Qiang Kan and Hongda Chen, "Compact Silicon-on-Insulator Dual-Microring Resonator Optimized for Sensing", Journal of Lightwave Technology, vol. 29, no. 10, pp. 1535-1541, 2011.
[32] Z. Wang, M. Jiang, H. Xu and R. Du, "New Optical Fiber Micro-Bend Pressure Sensors Based on Fiber-Loop Ringdown", Procedia Engineering, vol. 29, pp. 4234-4238, 2012.
[33] R. Guider, D. Gandolfi, T. Chalyan, L. Pasquardini, A. Samusenko, C. Pederzolli, G. Pucker and L. Pavesi, "Sensitivity and Limit of Detection of biosensors based on ring resonators", Sensing and Bio-Sensing Research, vol. 6, pp. 99-102, 2015.
[34] Z. Wang, M. Jiang, H. Xu and R. Du, "New Optical Fiber Micro-Bend Pressure Sensors Based on Fiber-Loop Ringdown", Procedia Engineering, vol. 29, pp. 4234-4238, 2012.
[35] D. Xu, M. Vachon, A. Densmore, R. Ma, A. Delâge, S. Janz, J. Lapointe, Y. Li, G. Lopinski, D. Zhang, Q. Liu, P. Cheben and J. Schmid, "Label-free biosensor array based on silicon-on-insulator ring resonators addressed using a WDM approach", Optics Letters, vol. 35, no. 16, p. 2771, 2010.
[36] X. Jiang, J. Ye, J. Zou, M. Li and J. He, "Cascaded silicon-on-insulator double-ring sensors operating in high-sensitivity transverse-magnetic mode", Optics Letters, vol. 38, no. 8, p. 1349, 2013.
[37] X. Jiang, Y. Chen, F. Yu, L. Tang, M. Li and J. He, "High-sensitivity optical biosensor based on cascaded Mach–Zehnder interferometer and ring resonator using Vernier effect", Optics Letters, vol. 39, no. 22, p. 6363, 2014.
[38] C. Ciminelli, F. Dell’Olio, D. Conteduca, C. Campanella and M. Armenise, "High performance SOI microring resonator for biochemical sensing", Optics & Laser Technology, vol. 59, pp. 60-67, 2014.
[39] G. Zhang, X. Feng, B. Liedberg and A. Liu, "Gas Sensor for Volatile Organic Compounds Detection Using Silicon Photonic Ring Resonator", Procedia Engineering, vol. 168, pp. 1771-1774, 2016.
[40] J. Wu, T. Moein, X. Xu, G. Ren, A. Mitchell and D. Moss, "Micro-ring resonator quality factor enhancement via an integrated Fabry-Perot cavity", Applied Physics Letters Photonics, vol. 2, no. 5, p. 056103, 2017.
[41] X. Fan, I. White, H. Zhu, J. Suter and H. Oveys, "Overview of novel integrated optical ring resonator bio/chemical sensors", Laser Resonators and Beam Control IX, 2007.

QR CODE