簡易檢索 / 詳目顯示

研究生: 吳東曜
Tung-Yao Wu
論文名稱: 以具有分佈式模組的殘差雙向長短期記憶為基準之超寬頻網絡及具有殘差遞迴神經網路之固定時間追蹤控制應用於全向型機器人之定位與導引
Distributively Modular Residual-Bi-LSTM-Based UWB Network and Residue RNN-Based Fixed-Time Tracking Control for the Localization and Navigation of Omnidirectional Mobile Robot
指導教授: 黃志良
Chih-Lyang Hwang
口試委員: 陳博現
Bor-Sen Chen
蘇順豐
Shun-Feng Su
莊家峰
Chia-Feng Juang
黃志良
Chih-Lyang Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 48
中文關鍵詞: 特定人士之追隨超寬頻無線系統雙向長短期記憶模型遞迴神經網路之限定時間追蹤控制全向服務型機器人Lyapunov穩定性理論
外文關鍵詞: Residual Bi-LSTM, Distributively modular UWB network, Residue RNN, Fixed-time control, Dynamic localization and navigation, Omnidirectional mobile robot
相關次數: 點閱:253下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了在無GPS區域實現全向移動機器人 (ODMR)的有效無線定位和導航,以 Residual Bi-LSTM (RBLSTM) 模型設計具有分佈式模塊化 UWB網絡(DM-UWBN)以提供這些優勢,例如,避免可能的過度擬合問題,再不會犧牲太多定位的前題下減少計算時間。除了 ODMR 的動態定位之外,還根據輸出的相對階數設計一種新的基於 Residue RNN 的固定時間跟踪控制(RRNN-FTTC),以對總體動態不確定性的穩定權重學習補償,達到更有效的追蹤控制。基於 ODMR 的運動學,設計新的及更有效的2D 參考姿態,與以往的研究相比,所設計的RRNN-FTTC具有以較小的控制輸入實現出色的跟踪性能。由於 RRNN-FTC(例如,5ms)和 DM- RBLSTM-UWBN(例如,150ms)的多採樣任務,相對應的導引將面臨更大的挑戰。最後,在無GPS的廣大區域中且有兩個支柱以呈現非視線效應,使用 RRNN-FTTC 導引 ODMR,證實我們的 RBLSTM-DM-UWBN 的優越性。


    To achieve an effective wireless localization and navigation of omnidirectional mobile robot (ODMR) in a global GPS-denied region, the distributively modular UWB network (DM-UWBN) is designed by Residue Bi-LSTM (RBLSTM) model to provide these advantages, e.g., avoidance of the possible overfitting problem, reduction of computation time without much sacrifice of localization. Besides the dynamic localization of ODMR, a Residue RNN-based fixed-time tracking control (RRNN-FTTC), including the stabilizing weight learning compensation of aggregately dynamic uncertainties, is designed by relative degree of output. Based on the kinematics of ODMR, a new and more effective 2D reference pose is designed, so that the outstanding tracking performance is accomplished by small control input in comparison to previous research. Owing to multi-sampling tasks of RRNN-FTC (e.g., 5ms) and DM- RBLSTM-UWBN (e.g., 150ms), the navigation will be more challenged. Finally, the navigation of ODMR using RRNN-FTTC in the global GPS-denied region with serval pillars to present Non-Line of Sight effect confirm the superiority of the proposed approach.

    摘要 i Abstract ii 目錄 iii 圖目錄 iv 表目錄 v 第一章 導論與文獻回顧 1 第二章 實驗設置與問題陳述 5 2.1系統建構 5 2.2 任務陳述 6 第三章 ODMR的動態定位利用DM-RBLSTM-UWBN 7 3.1 Residual Bi-LSTM模型 7 3.2 學習法則 9 3.3 局部子區域與實驗全區的座標轉換 10 第四章 使用RRNN-FTTC進行ODMR軌跡追蹤 11 4.1 ODMR術語 11 4.2 ODMR模型 12 4.3 RRNN-FTTC 14 4.3.1 數學預備 14 4.3.2 輸出的相對階數 16 4.3.3 RNNE-FTTT的設計 18 4.3.4 穩定性分析 19 第五章 結果及分析 21 5.1 ODMR軌跡追蹤模擬 21 5.2 實驗 25 5.2.1 追蹤軌跡 25 5.2.2 動態定位 25 5.2.3 使用DM-RBLSTM-UWBN的ODMR導引 26 第六章 結論和未來研究 30 參考文獻 31 附 錄 38

    [1] S. Gezici et al., “Localization via ultra-wideband radios: A look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 70–84, Jul. 2005.
    [2] A. Alarifi et al., “Ultra wideband indoor positioning technologies: Analysis and recent advances,” Sensors, vol. 16, no. 5, pp. 1–36, May 2016.
    [3] Apple. Apple—iPhone 11. Accessed: Mar. 31. [Online]. Available: https://www.apple.com/iphone-11.
    [4] K. Guo, X. Li, and L. Xie, “Ultra-wideband and odometry-based cooperative relative localization with application to multi-UAV formation control,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2590-2603, Jun. 2020.
    [5] Y.-Y. Chen, S.-P. Huang, T.-W. Wu, W.-T. Tsai, C.-Y. Liou, and S.-G. Mao, “UWB system for indoor positioning and tracking with arbitrary target orientation, optimal anchor location, and adaptive NLOS mitigation,” IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 9304-9314, Sep. 2020.
    [6] K. Zhao, M. Zhu, B. Xiao, X. Yang, C. Gong, and J. Wu, “Joint RFID and UWB technologies in intelligent warehousing management system,” IEEE Internet Things J., vol. 7, no. 12, pp. 11640–11655, Dec. 2020.
    [7] Y. Xu, Y. S. Shmaliy, C. K. Ahn, T. Shen, and Y. Zhuang, “Tightly-coupled integration of INS and UWB using fixed-lag extended UFIR smoothing for quadrotor localization,” IEEE Internet of Things Journal, vol. 8, no. 3, pp. 1716-1727, Feb. 2021.
    [8] B. Silva and G. P. Hancke, “IR-UWB-based non-line-of-sight identification in harsh environments: principles and challenges,” IEEE Trans. Ind. Informat., vol. 12, no. 3, pp. 1188–1195, Jun. 2016.
    [9] S. He and X. Dong, “High-accuracy localization platform using asynchronous time difference of arrival technology,” IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1728–1742, Jul. 2017.
    [10] A. R. J. Ruiz and F. S. Granja, “Comparing ubisense, BeSpoon, and Deca Wave UWB location systems: Indoor performance analysis,” IEEE Trans. Instrum. Meas., vol. 66, no. 8, pp. 2106–2117, Aug. 2017.
    [11] J. Sidorenko, V. Schatz, N. Scherer-Negenborn, M. Arens, and U. Hugentobler, “Error corrections for ultrawideband ranging,” IEEE Trans. Instrum. Meas., vol. 69, no. 11, pp. 9037–9047, Nov. 2020.
    [12] P. Krapez and M. Munih, “Anchor calibration for real-time-measurement localization systems,” IEEE Trans. Instrum. Meas., vol. 69, no. 12, pp. 9907–9917, Dec. 2020.
    [13] C. Taramasco, T. Rodenas, F. Martinez, P. Fuentes, R. Munoz, R. Olivares, V. H. De Albuquerque, and J. Demongeot, “A novel monitoring system for fall detection in older people,” IEEE Access, vol. 6, pp. 43563-43574, 2018.
    [14] J. Zhou, Y. Lu, H.-N. Dai, H. Wang, and H. Xiao, “Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM,” IEEE Access, vol. 7, pp. 38856-38866, 2019.
    [15] C. Dhiman, and D. K. Vishwakarma, “View-invariant deep architecture for human action recognition using two-stream motion and shape temporal dynamics,” IEEE Trans. Image Process., vol. 29, pp. 3835-3844, 2020.
    [16] G. Du, Z. Wang, B. Gao, S. Mumtaz, K. M. Abualnaja, and C. Du, “A convolution bidirectional long short-term memory neural network for driver emotion recognition,” IEEE Trans. Intel. Transp. Syst., vol. 22, no. 7, pp. 4570-4578, Jul. 2021.
    [17] X. Sun, Y. Gao, R. Sutcliffe, S.-X. Guo, X. Wang, and J. Feng, “Word representation learning based on bidirectional GRUs with drop loss for sentiment classification,” IEEE Trans. Syst. Man Cybern.: Syst., DOI: 10.1109/TSMC.2019.2940097.
    [18] Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,” Computation and Language, vol. arXiv:1508.01991, 2015.
    [19] K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual networks of residual networks: multilevel residual networks,” IEEE Trans. Cir. Syst. Vid. Technol., vol. 28, no. 6, pp. 1303-1314, Jun. 2018.
    [20] L. Zhu, S. Zhang, K. Chen, S. Chen, X. Wang, D. Wei, and H. Zhao, “Low-SNR recognition of UAV-to-ground targets based on micro-doppler signatures using deep convolutional denoising encoders and deep residual learning,” IEEE Trans. Geosci. Remote Sens, vol. 60, Art. No. 5106913, 2022.
    [21] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in arXiv:1603.05027v3, Jul 2016.
    [22] G. Yang and H. Xu, “A Residual BiLSTM model for named entity recognition,” IEEE Access, vol. 8, pp. 227710-227718, 2020.
    [23] M.-S. Ko, K. Lee, J.-K. Kim, C. W. Hong, Z. Y. Dong, and K. Hur, “Deep concatenated residual network with bidirectional LSTM for one-hour-ahead wind power forecasting,” IEEE Trans. Sustainable Energy, vol. 12, no. 2, pp. 1321-1335, Apr. 2021.
    [24] C.-L. Hwang and Y.-H. Chen, “Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error,” IEEE Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1464-1476, Jul. 2020.
    [25] L. Xiao, S. Li, K. Li, L. Jin, and B. Liao, “Co-design of finite-time convergence and noise suppression: a unified neural model for time varying linear equations with robotic applications,” IEEE Trans. Syst. Man Cybern.: Syst. vol. 50, no. 12, pp. 2701-2711, Dec. 2020.
    [26] K. Li, S. Tong, and Y. Li, “Finite-time adaptive fuzzy decentralized control for nonstrict-feedback nonlinear systems with output- constraint,” IEEE Trans. Syst. Man Cybern.: Syst. vol. 50, no. 12, pp. 5271-5284, Dec. 2020.
    [27] Z. Lu, Q. Ge, Y. Li, and J. Hu, “Finite-time synchronization of memristor-based recurrent neural networks with inertial items and mixed delays,” IEEE Trans. Syst. Man Cybern.: Syst. vol. 51, no. 5, pp. 2701-2711, May 2021.
    [28] C. Liu, H. Wang, X. Liu , and Y. Zhou, “Adaptive finite-time fuzzy funnel control for nonaffine nonlinear systems,” IEEE Trans. Syst. Man Cybern.: Syst. vol. 51, no. 5, pp. 2894-2903, May 2021.
    [29] W. Qi, X. Yang, C. K. Ahn, J. Cao, and J. Cheng, “Input–output finite-time sliding-mode control for T–S fuzzy systems with application,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 9, pp. 5446-5455, Sep. 2021.
    [30] C.-L. Hwang and B. S. Chen, “Adaptive finite-time saturated tracking control for a class of partially known robots,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 9, pp. 5674-5684, Sep. 2021.
    [31] Y. Fu, N. Sun, T. Yang, Z. Qiu, and Y. Fang, “Adaptive coupling anti-swing tracking control of underactuated dual boom crane systems,” IEEE Trans. Syst. Man Cybern.: Syst. DOI: 10.1109/TSMC.2021. 3102244.
    [32] V. K. Tripathi, A. K. Kamath, L. Behera, N. K. Verma, and S. Nahavandi, “An adaptive fast terminal sliding-mode controller with power rate proportional reaching law for quadrotor position and altitude tracking,” IEEE Trans. Syst. Man Cybern.: Syst. DOI: 10.1109 /TSMC.2021.3072099.
    [33] J. Yan, Z. Guo, X. Yang, X. Luo, and X. Guan, “Finite-time tracking control of autonomous underwater vehicle without velocity measurements,” IEEE Trans. Syst. Man Cybern.: Syst. DOI: 10.1109/ TSMC.2021.3095975.
    [34] C.-L. Hwang and H. B. Abebe, “Generalized and heterogeneous nonlinear dynamic multiagent systems using online RNN-based finite-time formation tracking control and application to transportation systems,” IEEE Trans. Intell. Transp. Syst., DOI: 10.1109/TITS. 2021.3126662.
    [35] C.-F. Juang, C.-H. Lin, and T. B. Bui, “Multiobjective rule-based cooperative continuous ant colony optimized fuzzy systems with a robot control application,” IEEE Trans. Cybern., vol. 50, no. 2, pp. 650-663, Feb. 2020.
    [36] C.-W. Kuo, C.-C. Tsai, and C.-T. Lee, “Intelligent leader-following consensus formation control using recurrent neural networks for small-size unmanned helicopters,” IEEE Trans. Syst. Man Cybern.: Syst. vol. 51, no. 2, pp. 1288-1301, Feb. 2021.
    [37] W. Yuan, Z. Li, and C.-Y. Su, “Multisensor-based navigation and control of a mobile service robot,” IEEE Trans. Syst. Man Cybern.: Syst. vol. 51, no. 4, pp. 2624-2634, Apr. 2021.
    [38] W. Xie, D. Cabecinhas, R. Cunha, and C. Silvestre, “Cooperative path following control of multiple quadcopters with unknown external disturbances,” IEEE Trans. Sys., Man, Cybern.: Syst., vol. 52, no. 1, pp. 667-679, Jan. 2022.
    [39] C.-L. Hwang, F. C. Weng, D. S. Wang, and F. Wu, “Experimental validation of speech improvement based adaptive stratified finite-time saturation control of omnidirectional service robot,” IEEE Trans. Sys., Man, Cybern.: Syst., vol. 52, no. 2, pp. 1317-1330, Feb. 2022.
    [40] T. Terakawa, M. Komori, K. Matsuda, and S. Mikami, “A novel omnidirectional mobile robot with wheels connected by passive sliding joints,” IEEE/ASME Trans. Mechatronics, vol. 23, no. 4, 1716-1727, Jul. 2018.
    [41] C. Ren, X. Li , X. Yang, and S. Ma, “Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9480-9489, Dec. 2019.
    [42] C.-L. Hwang, D.-S. Wang, F.-C. Weng, and S.-L. Lai, “Interactions between specific human and omnidirectional mobile robot using deep learning approach: SSD-FN-KCF,” IEEE Access, vol. 8, pp. 41186-41200, 2020.
    [43] L. Barbieri, M. Brambilla, A. Trabattoni, S. Mervic, and M. Nicoli, “UWB localization in a smart factory: augmentation methods and experimental assessment,” IEEE Trans. Instru. Meas., DOI: 10.1109/TIM.2021.3074403.
    [44] S. R. Dubey, S. Chakraborty, S. K. Roy, S. Mukherjee, S. K. Singh, and B. B. Chaudhuri, “diffGrad: An optimization method for convolutional neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4500-4511, Nov. 2020.
    [45] H. K. Khalil, Noninear System. 2nd Ed., Prentice-Hall Inc. 1996.
    [46] C.-L. Hwang and N. W. Chang, “Fuzzy decentralized sliding-mode control of car-like mobile robots in a distributed sensor-network space,” IEEE Trans. Fuzzy Syst., vol. 16, no. 1, pp. 97-109, Feb. 2008.

    無法下載圖示 全文公開日期 2025/07/29 (校內網路)
    全文公開日期 2025/07/29 (校外網路)
    全文公開日期 2025/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE